
www.manaraa.com

Distributed Decentralized Microservice Development:

A Distributed Model for a Decentralized System

by

Zachary M. Dall

Submitted in partial fulfillment

of the requirements for the degree of
Doctor of Professional Studies

in Computing

at

Seidenberg School of Computer Science and Information Systems

Pace University

October 2019

www.manaraa.com

ProQuest Number:

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent on the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Published by ProQuest LLC (

 ProQuest

). Copyright of the Dissertation is held by the Author.

All Rights Reserved.
This work is protected against unauthorized copying under Title 17, United States Code

Microform Edition © ProQuest LLC.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, MI 48106 - 1346

28026975

28026975

2020

www.manaraa.com

We hereby certify that this dissertation, submitted by Zachary M. Dall, satisfies the
dissertation requirements for the degree of Doctor of Professional Studies in Computing

Seidenberg School of Computer Science and Information Systems
Pace University 2019

www.manaraa.com

Abstract

Distributed Decentralized Microservice Development:

A Distributed Model for a Decentralized System
by

Zachary M. Dall

Submitted in partial fulfillment
of the requirements for the degree of

Doctor of Professional Studies
in Computing

October 2019

Microservice is a distinct architecture that exhibits a high degree of independence
regarding the decentralization of development, operation, and teamwork. Decentralization

is where different teams, processes, and procedures that are fragmented to promote quick,
agile development. Many companies and development groups are moving away from
building sizeable monolithic software projects and using the agility of microservices to
decouple services and deliver fast solutions. Even with the advantages of fast, agile

deployment and the decoupling extensive monolithic services, microservices architecture
encompasses more than the decomposition of applications. If the organization and cultural
impacts are not addressed initially and continually, the output of a microservices build may
not match the desired goal. This dissertation analyzes the need for sharing or distribution

of team structures, standardizations, and governance within a microservice development
project. The study shows, with the addition of tools and or models utilized anywhere within
a development System Development Lifecycle (SDLC) process, decentralized teams are
more prepared to mitigate risks and distribute findings and governance between the teams.

Last, the study shows, with the additions of models and tools, used by the microservice
decentralized development teams, that they are more comfortable gathering data to help
streamline their development process, making for a stronger cohesive build.

www.manaraa.com

Acknowledgments

I would like first to thank my doctoral advisor Dr. Tilak Agerwala. Dr. Agerwala took time
out of his busy life and always brought is his passion and his belief in higher learning. Also,
Dr. Agerwala’s drive and knowledge helped push and motive me to think outside the box
as well as pursue my passions outside school.

Second, I would like to thank Dr. Tapper for all the help, push , and motivation that he
provided over the last 3 ½ years.

I would also like to personally thank one classmate who provided me the biggest lesson of
all: “To believe in myself and not overthink.” Thank you to a very talented Dr. Robert
Nardelli (2018 Pace DPS graduate) who has been a great classmate, an excellent

conference co-author, and a partner in crime for four years. I will never forget his effect on
me, and it is incredible to call him now a life-long friend.

Third, is to my family and friends. I believe I drove everyone crazy during this process,
and I have no words to explain my thanks and gratitude. It was tough to juggle valuable
time away from family and friends to continue to work and complete something I have
always wanted to accomplish.

Last, thank you to Kristen Stolle for being my rock and my sounding board, thought out
the years.

In conclusion, I will NOT forget what this journey and what the Pace University staff have
provided me. I’m very honored to call Pace University my alma mater.

www.manaraa.com

 v

Abstract .. iii

List of Tables ... x

List of Figures ... xi

Chapter 1 Introductory to the Study.. 1

1.1 Introduction .. 1

1.2 Research Problem ... 3

1.3 Objective .. 4

1.4 Research Question(s) / Hypothesis: ... 5

1.5 Scope ... 6

1.6 Limitations ... 7

Chapter 2 Background on Service-Oriented Architecture and Microservices............ 8

2.1 Introduction .. 8

2.2 Service-Oriented Architecture ... 9

2.3 Microservices ... 10

2.4 Development .. 12

2.4.1 Why SOA development can cause problems.. 13

2.4.2 Reason to utilize Microservices... 14

2.5 Decentralization and Distributed.. 16

2.6 Decentralization Organization and Use of Tools... 20

2.7 Conclusion ... 22

Chapter 3 Initial Survey ... 23

3.1 Introduction .. 23

3.1.1 Reason for Initial Survey ... 23

3.1.2 Companies utilized within the survey ... 24

3.1.3 Survey Short description .. 24

3.1.4 Questions listed from Survey ... 25

3.1.5 Outcome of Survey .. 30

www.manaraa.com

 vi

3.2 Outcome of Survey ... 48

3.2.1 Governance Standards .. 49

3.2.2 API Ownership... 50

3.2.3 Security Rigger: ... 51

Chapter 4 Research.. 52

4.1 Chapter Introduction ... 52

4.1.1 Research and Setup.. 52

4.1.2 Experimental procedures.. 53

4.1.3 Learning Tools and Model overview .. 54

4.2 Tools / Models built .. 55

4.2.1 Overview of Tools built .. 55

4.2.2 Team Readiness Distributed Security Standard Matrix Tool......................... 55

4.2.3 Distributed Security Standard Matrix Tool .. 56

4.2.4 CDAD (Characterize, Diagnose, Anticipate, Distribute) Learning Model 56

4.2.5 Dev-CDAD-Prod Model ... 56

4.3 Sub-models... 57

4.3.1 Mind map and Standards .. 57

4.3.2 Scatter Charts ... 57

4.3.3 Heat Maps.. 58

4.4 Data Analytics .. 58

4.4.1 Microsoft Excel.. 59

4.4.2 Tableau Software ... 59

Chapter 5 Metrix and Learning Models .. 60

5.1 Introduction .. 60

5.2 Agile Readiness Risk Grid .. 60

5.2.1 Purpose .. 60

5.2.2 Overview ... 60

www.manaraa.com

 vii

5.2.3 Instructions .. 61

5.2.4 Agile Readiness Risk Grid Instructions for Microservice 62

5.2.5 Team Agile Risk Grid Worksheet ... 62

5.3 Data Analytics – Radar Map.. 72

5.3.1 Radar Map – Agile Readiness Risk Grid ... 72

5.3.2 Radar Map How to read.. 72

5.3.4 Radar Map - Output.. 73

5.3.5 Radar Map – End Goal ... 74

5.3.6 Agile Readiness Scatter Charts ... 75

5.4 Tableau – Decentralized Team Overview... 76

5.4.1 Introduction ... 76

5.4.2 Dimensionality ... 76

5.4.3 Filters/Marks.. 77

5.4.4 Distributed Team Agility Readiness Map .. 78

5.4.5 Agile Readiness Risk Grid – Conclusion ... 80

5.5 Distributed Security Standard Matrix Tool ... 80

5.5.1 Purpose .. 80

5.5.2 Overview ... 80

5.5.3 Instructions .. 81

5.5.4 Security Standard Matrix Tool .. 82

5.5.4.1 Security Standard Matrix Tool Worksheet ... 82

5.6 Data Analytics – Radar Map.. 91

5.6.1 Radar Map – Distributed Security Standard Matrix Tool.............................. 91

5.6.2 Radar Map How to read.. 91

5.6.3 Radar Map - Output.. 93

5.6.4 Radar Map – End Goal ... 93

5.7 Data Analytics – Risk Equivalency Metrix... 94

www.manaraa.com

 viii

5.8 Tableau – Decentralized Team Overview... 96

5.8.1 Introduction ... 96

5.8.2 Agile Usage ... 96

5.8.3 Distributed Security Standard Matrix Reports - Tableau Reports/Dashboards96

5.8.4 Dimensionality ... 99

5.8.5 Rating and Description of Risk Dashboard ... 101

5.8.6 Conclusion - Rating and Description Dashboard 103

5.9 Average Security Risk per Sprint Report.. 103

5.9.1 Introduction ... 103

5.9.2 Dimensionality ... 103

5.10 Team – Overall Output Risk Assessment Reports... 107

5.10.1 Introduction.. 107

Chapter 6 Conceptual Models .. 111

6.1 Chapter Introductions ... 111

6.2 CDAD (Characterize, Diagnose, Anticipate, Distribute) Learning Model 111

6.2.1 Introduction ... 111

6.2.2 Conclusion ... 113

6.3 Dev-CDAD-Prod Model ... 114

6.3.1 Introduction ... 114

6.3.2 CDAC Overview .. 115

Chapter 7 Final Survey .. 117

7.1 Introduction .. 117

7. 2 Exit Survey Questions and Answers ... 117

7.2.1 Exit Survey .. 117

7.2.2 Exit Survey Question #2 - Agile Readiness Risk Grid Survey Exit 119

7.2.3 Exit Interview – Feedback .. 122

Chapter 8 Conclusion and Future work... 126

www.manaraa.com

 ix

8.1 Conclusion ... 126

8.2 Future Work ... 128

8.2. 1 Manual Utilization... 128

8.2.2 Digitalize Utilization .. 128

Appendix A Glossary ... 129

References ... 133

www.manaraa.com

 x

List of Tables

Table 1 Differences between SOA and Microservices.. 12

Table 2: (Company A) Survey Question #4 ... 35

Table 3: (Company B) Survey Question #4 ... 36

Table 4 (Company A) Survey Question #8 .. 42

Table 5 (Company B) Survey Question #8 .. 43

Table 6: (Company A) Survey Question #9 ... 44

Table 7: (Company B) Survey Question #9 ... 44

Table 8: (Company A) Survey Question #10 ... 45

Table 9: (Company B) Survey Question #10 ... 46

Table 10: Illustration: Agile Groups and Agile Areas... 63

Table 11: Agile Readiness Levels ... 64

Table 12: Security Group and Standards.. 83

Table 13: Security Standard Levels ... 85

Table 14: Final Survey Participants and Roles ... 117

Table 15: Final Survey: Likert Scale Question #1 .. 118

Table 16: Distributed Security Standard Matrix Tool Survey Exit 118

Table 17: Final Survey: Likert Scale Question #2 .. 119

Table 18: Agile Readiness Risk Grid Survey Exit .. 119

Table 19: Final Survey: Likert Scale Question #3 .. 120

Table 20: CDAD Usage Survey Exit ... 120

Table 21: Final Survey: Likert Scale Question #4 .. 121

Table 22: DEV-CDAD-Prod Usage Survey Exit.. 121

Table 23: Final Survey: Likert Scale Question #5 .. 122

Table 24: Overall Research - Exit Survey .. 122

www.manaraa.com

 xi

List of Figures

Figure 2-1: SOA build of a Monolith .. 13

Figure 2-2 Challenges of monolithic architecture... 14

Figure 2-3 SOA vs. Microservice Architecture .. 15

Figure 2-4: Centralized / Decentralized and Distributed ... 17

Figure 3-1: (Company A) Survey Question #1... 31

Figure 3-2: (Company B) Survey Question #1 ... 32

Figure 3-3: (Company A) Survey Question #2... 33

Figure 3-4: (Company B) Survey Question #2 ... 33

Figure 3-5: (Company A) Survey Question #3... 34

Figure 3-6: (Company B) Survey Question #3 ... 34

Figure 3-7: (Company A) Survey Question #5... 37

Figure 3-8: (Company B) Survey Question #5 ... 38

Figure 3-9: (Company A) Survey Question #6... 39

Figure 3-10: (Company B) Survey Question #6 .. 39

Figure 3-11: (Company A) Survey Question #7 .. 40

Figure 3-12 (Company B) Survey Question #7 .. 41

Figure 3-13: (Company A) Survey Question #11 ... 47

Figure 3-14: (Company B) Survey Question #11 ... 48

Figure 5-1: Illustration: Agile Readiness Grid Instructions ... 62

Figure 5-2: Agile Readiness Risk Grid – Radar Map.. 74

Figure 5-3: Agile Readiness Risk Grid – Radar Map.. 75

Figure 5-4: Agile Readiness Risk Grid – Radar Map.. 76

Figure 5-5: Tableau Columns and Rows for Agile Readiness Risk Grid 77

Figure 5-6: Tableau Filters and Marks for Agile Readiness Risk Grid 78

Figure 5-7: Tableau Distributed Team Agility Readiness Map 79

Figure 5-8: Data Mining information within California .. 79

www.manaraa.com

 xii

Figure 5-9: Security Standard Matrix Tool Instructions/Overview 82

Figure 5-10: Team Distributed Security Standard Radar Metrix 92

Figure 5-11: Performance Maturity ... 93

Figure 5-12: Risk Equivalency Metrix... 95

Figure 5-13: Heat/Stacked Bar Chart... 98

Figure 5-14: Mata Mining on Description - Rating and Description.............................. 99

Figure 5-15: Dimensions and data for Rating and Description Dashboard................... 100

Figure 5-16: Tableau Rows and Columns for Rating and Description Dashboard........ 100

Figure 5-17: Dimensions and Marks for Rating and Description Dashboard 101

Figure 5-18: Rating and Description Risk Dashboard... 102

Figure 5-19: Data Mining / Deeper Drive into Rating and Description Risk Dashboard102

Figure 5-20: Hierarchy of Time set in the ‘Average Security Risk Per Sprint Report’ . 104

Figure 5-21: Hierarchy of Program Increment of ‘Average Security Risk Per Sprint Report’
 .. 105

Figure 5-22: ‘Average Security Risk per Sprint Report’ – Dimensionality 105

Figure 5-23: Average Security Risk per Sprint Report ... 106

Figure 5-24: Data mining – Viewing data for Monitoring Security group’s risk per Sprint
 .. 107

Figure 5-25: Overall Output Risk Assessment Reports... 108

Figure 5-26: Data mining - Overall Output Risk Assessment Reports 109

Figure 5-27: Deep-dive into analytics for ‘Logon’ Security Standard for all distributed
teams.. 110

Figure 6-1: CDAD (Characterize, Diagnose, Anticipate, Distribute) Learning 112

Figure 6-2: Dev-CDAD-Prod Model ... 114

Figure 7-1: Exit Interview - Feedback #1 .. 123

Figure 7-2: Exit Interview - Feedback #2 .. 124

Figure 7-3: Exit Interview - Feedback #3 .. 125

www.manaraa.com

1

Chapter 1

Introductory to the Study

1.1 Introduction

In today’s world of fast development, quick upkeep , and modular changes, to both internal

and external applications/solutions, developers needed an approach to build and deliver

elastic scalability solutions within a more agile way. Developers, when approached with

an opportunity to build a given solution, look for the fastest way to develop with little or

no downtime. This is important so they can meet their given SLAs but build with the quality

and innovation that is needed.

Because of the shift in agility, and solutions’ ‘speed to market’ timeframes, the days of

SOA architecture is quickly becoming a thing of the past. In our next chapter, we will

explain why developing via a Service Oriented Architecture (SOA) approach is not the

way many companies are now creating software or how they ate utilizing team (dev,

business, etc.) to build solutions.

However, in the world now of quick-growing Digital and FinTech companies, the

mindfulness of getting quick solutions to the market and clientele is now a critical “must.

When demands are set on based on technology’s growth, the end-users and consumers are

now looking for fast solutions to known issues and more significant innovations. These

www.manaraa.com

2

demands are not just about new technology but also the existing legacy technology that

has been built to keep up with the latest technology and demands.

To perform the upkeep of technology, the mindset of building and delivery of development

solutions as changed with the introduction of agile development. Along with the

introduction of that allows smaller teams to work better in parallel, the usage of

Microservices became a reality.

Microservices allows smaller independent teams to build and deploy a ‘break -out’ of a

particular service, as independent solutions. Today’s modern deployment of Microservices

are frequently customer-facing and typically highly integrated services used to create

previously impossible combinations of application functionality. Forrester writes that

Microservices have an “important role in the future of solution architecture,” mostly talking

about faster solution deployments that focus on greater operational resilience and

scalability [17]. Gartner also provided their overview that Microservices “enable

unprecedented agility and scalability” [17]. Most of these solutions, leverage ‘API type of

contracts’ to interface with a plethora of back-end systems to allow dynamic solutions to

the end-user (client or clientele). These solutions allow for the fast adoption of fixes to

integrate with solutions needed for full development.

However, these self-sufficient, autonomous solutions are normally ‘self -governing’

solutions that mostly follow self-guiding governance when the service was developed. As

each service usually is independently built, the standards and ownership typically come

from a ‘bottom-up’ development approach, where the developer building the service owns

the overall SDLC model.

www.manaraa.com

3

1.2 Research Problem

When starting or building a team and or solution for a new Microservice, the agility, the

build-ownership, and standards become decentralized between multiple developmental

teams.

By following the Microservices mantra, the developmental teams will be broken out to

work on separate solutions and services, allowing them for agile development and builds

to take place. Speed and safe scalability are important concepts [5]. However, splitting up

teams can run into some issues with reliability and responsibilities. Decentralization may

allow the team to select the right tool for the right job, but this also means that a developer

may not follow a standardized development or technology patterns. Decentralization

benefits the developers to have the freedom to choose the best useful tools but lacks the

upfront governance that each team needs to follow, as many teams will be building a

granular scaling/mixed technology stack. The many issues with the monolithic approach

of SOA that it becomes so large and complex, even the developers can’t understand their

own system. However, even with Microservice, and the emphasis on small, self-governing

teams, every fortuitous company need cross-functional teams and procedures to connect

the dots [5].

Throughout this paper, we will should how agility is needed, but the needs for a preexisting

distributed governance understanding between all teams, with a decentralized development

team, are needed.

As governance holds many meanings and standards in development operations, in this

paper, we will focus on the below factors:

www.manaraa.com

4

1) Need for developers, within non-centralize (decentralization) teams, to follow

and understand the importance of governance

2) Usage of models, at the inset and throughout a project, will help guild, or at least

level set, the importance of governance between decentralized teams.

3) Consider the need to centralize problems and solutions around security needs

when developers develop in separate decentralized teams

4) Agility needed for risk assessments and communications between decentralized

teams for distribution to perform correctly within a Microservice

environment/project/teams. Models/procedures should be utilized for adherence to

much-needed standardizations within agile development.

1.3 Objective

The objective of this research is to help developers follow a model or methodology when

gathering scope, designing build, and or thinking of the final output of a service. We hope

to:

• Developing an Agile Readiness Risk Grid Tool, to build strong team governance,

when selecting/building out decentralized agile teams; so best practices and

behaviors can be followed throughout

• Constructing a Distributed Security Standard Matrix Tool, risk model, to educate

all team members on a structured governance framework to manage microservices

security development and risks that can happen during the breakdown and build-

up of monolithic applications.

www.manaraa.com

5

• Building a lightweight CDAD governance model to guide developers to

Characterize, Diagnose, Anticipate, and Distribute critical standards when

introducing and developing a solution within an Agile Microservice framework.

• I have developed a lightweight Dev-CDAD-Prod Model, based on a DevOps

model. This model helps software development practices, combines software

development and information technology operations, follows a development life

cycle.

In this research, we will attempt to conclude that the need for a more distributed type

of government rather than a decentralized type of governance when building a

Microservice.

The initial gathering of information amassed is from survey data garnered from two

companies. Initial pain-points and findings gathered will help build and create specific

models, which were then presented to development / DevOps teams, in which they give

feedback

Our attempt will be that giving first rules/guidelines/learning will be a must to help

govern the outcome of a decentralized development solution, such as Microservices.

1.4 Research Question(s) / Hypothesis:

RQ1: What are some of the common problems that a distributed governance model can

eliminate or alleviate when developers are ready to start developing their solutions?

H1: Distributed Governance model reduces setup time for Microservice build solutions

www.manaraa.com

6

RQ2: What impacts are felt when applying distributed standardized models, within

decentralized teams at/during the time of development (hurt or help)?

H2: Distributed Governance model reduces risks and garners a better resilience solution

RQ3: What impact administrating these models, provide to team and security standards

(hurt or help)?

H3: Distributed Governance models, allows for a better resilient model that subsequently

allows for better security standards and more reliable team risk mitigation

1.5 Scope

The research will be limited to two companies.

▪ Company A and B

▪ Start: Gather data from interview/survey focusing on pain-points, what is

needed

▪ End: Introducing of new governance model to strengthen and “Phase-Into”

their current process

The methodology that we will follow will be at an Empirical approach where we will

collect our data via:

▪ Questionnaires/observations/Surveys (Before and After)

▪ Interviews (Before and After)

www.manaraa.com

7

I will also utilize an Analytical Simulation approach as I will promote the simulation of

data to enter within new Distributed Governance Metrics that we have constructed. The

data will come from 2 new models built 1) Distributed Security Standard Risk Matrix Tool

and 2) Agile Readiness Risk Grid.

These matrix learning tools are checklists and/or procedures to help guide the developers

distributed between the team. It also provides procedures and guidelines to ensure

developers are following some standardization of governance, be it security, ownership,

and/or control as they are trying to develop services in a fully decentralized agile way. Last,

I will analyze the simulated data, via a powerful analytical tool (Tableau) to represent data

pulled from the matrix built. The end goal is to use these tools/models and proved they are

designed to help the decentralized developmental teams, to analyze, and aid in any Risk

mitigation by the distribution of standardization to each team, as well as allowing

developers to continue to follow the full Agile Methodology

1.6 Limitations

Each place of business utilizes development methodologies different. Company A and B

will utilize different development governance standards from the next. This paper will

utilize feedback from 2 developmental teams, from separate companies, to help promote

the need for standardization.

www.manaraa.com

8

Chapter 2

Background on Service-Oriented Architecture and Microservices

2.1 Introduction

Within this chapter, we will discuss the questions that arise from different development

methodologies that affect companies’ different ways. The days of building an application,

via an SOA architectural style, from the ground up with finalized completed requirements,

are become a thing of the past. So, questions emerge [22]:

• What is the difference between Microservices and SOA?

• Is Microservices an evolution of SOA or something entirely different?

SOA and Microservices occupy different territories, but Microservices and SOA are

similar in many respects.

Microservices have become an intricate part of the developmental landscape in recent

years, as developer’s gander at their achievements in decoupling their monolithic

applications.

Companies like Uber and NetFlix may have brought the methodology to the mainstream;

however, many companies are adopting microservices, within their enterprises to increase

scalability, deployment speed, and release frequency.

It’s crucial for companies to become accustomed to the advantages and disadvantages of

microservices, as well as the disadvantages, as they seek to evaluate if this type of

architecture is a good fit [2], [32].

https://www.tiempodev.com/corporateblog/advantages-of-a-microservices-architecture
https://www.tiempodev.com/corporateblog/advantages-of-a-microservices-architecture
https://www.tiempodev.com/corporateblog/disadvantages-of-a-microservices-architecture

www.manaraa.com

9

2.2 Service-Oriented Architecture

In recent years, even up to today, developers are still utilizing and building extensive

monolithic applications utilizing an SOA (Service-Oriented Architecture) approach.

Developers utilize the Service Oriented Architecture as distinct components of the

application that provide services to other components via a communication protocol over

a network [3]. The communication can involve easy data passing, or it could involve two

or more services, integrating and connecting services. These services carry out some small

functions, such as validating payments, creating a user account, or providing social log-in

[3].

However, when developing within a Service-oriented Architecture, developers are less

concerned about modularization of an application, and more abou t how to fashion an

application by the integration of distributed, separately-maintained and deployed software

components.

When developing, there are two main roles in SOA, a service provider, and a service

consumer. The Consumer Layer (human, other components of the app or third parties)

interact with the SOA, and the Provider Layer consists of all the services within the

SOA.[3], [6]

One big issue is that development, within SOA, becomes too complicated, due to its many

procedures. The slowness becomes the downfall. Even if a change is made, the entire build

needs to be validated, checked, and possibly re-engineered. While the teams and

www.manaraa.com

10

functionality may be monolithic and possibly stable in the long term, SOA could not

support the cooperation of IT [27].

Microservices is now the approximate next step in the evolution of Service-Oriented

Architectures. This architecture is a specific way of developing software mobile and or

web applications as suites of independent services —  or ‘microservices.’

2.3 Microservices

When developing or breaking down large monolithic applications, services are created to

serve only one specific business function. This function can be to utilize, User Management

services, User Roles, Search Engine, Social Media Logins, etc. Furthermore, services are

entirely independent of each other, in which the service could be written in different

programming languages or even use different databases, to create a service. This is a

significant change from the singular/monolithic development via SOA.

Also, unlike SOA, Microservices do not use centralized service management.

Centralization is almost non-existent, as microservices use lightweight HTTP, REST, or

Thrift APIs for communicating between themselves.

 In layman terms, monoliths are similar to a big container wherein all the software

components of an application are assembled and firmly packaged [10], [22]. The concepts

of an SOA are present in modern architecture but have evolved in several ways. Integration

tools, patterns, and standards have evolved so that functions and data can be more

efficiently delivered and developed.

www.manaraa.com

11

Service exposure has now evolved into APIs. Application Programming Interface (API)

helps to simplify exposure, consumption, management, and, in some cases, monetizing

business functions. Many software companies release their API to the public so that other

software developers can design products that are powered by its service. The monolithic

mantra cannot follow that agility. The building and deploying of APIs, help applications

talk to each other without any user knowledge or intervention [27].

New application architectures, such as microservices architecture and API enablement,

developers are now able to focus more closely on business logic, continuous development.

The result of the build can also be structured to an environment or a particular solution

where that build would need to be executed and or launched [10].

The combination of these developments enables solutions to be built in more agile styles

and applications to benefit from new levels of elastic scalability and fault tolerance. [10].

The main differences between the two developmental methodologies are prominently

characterized by Respodovski. [23]. Please see Table 1 below.

www.manaraa.com

12

Table 1 Differences between SOA and Microservices

2.4 Development

When it comes to developing an SOA, the solution is built by a group of the same team

members acting on a solution that will entail all that is needing to build the solution from

the requirement to a single interface need.

www.manaraa.com

13

Figure 2-1: SOA build of a Monolith

2.4.1 Why SOA development can cause problems

With the motivation of the creation of building a mono-development build, each team

member will be utilizing and working on the same platform and build at the same time.

Each team member would work within the same framework, same requirements , and the

same environment. The work and deployment of an SOA monolithic build would need to

be built, tested, scheduled, and deployed in a gradual way.

www.manaraa.com

14

This type of build would cause the development to meet below ‘Figure 2-2’ [22]:

Figure 2-2 Challenges of monolithic architecture

Many operational and development dependencies are needed to be thought through,

tracked, delivered, and govern.

2.4.2 Reason to utilize Microservices

The above challenges, in Figure 2-2, were many of the main reasons that led to the

evolution of microservices. Microservices, aka microservice architecture, is an

architectural/development style that designs an application as an assemblage of small

autonomous services that are modeled around a business domain [22].

As stated before, within a microservice architecture, each service or API, is self-contained

and is applied to a single business capability.

www.manaraa.com

15

Figure 2-3 SOA vs. Microservice Architecture

The above diagram, Figure 2-3, allows us to visually show the layout and development

of a ‘Payment Solution’ as a use case to understand the difference between SOA and MSA.

In a monolithic development, the development lifecycle is following based on defined

building blocks, predetermined development, but as we have seen can cause inflexibility

of development, speed, and most crucial sharing and reusing what has been built.

The difference between the two development methods leads to a more flexible, sharing of

resources and services, and this allows developers to deliver faster to consumers as well as

allow for:

• Decoupling - Services within a system are primarily decoupled, so the

application as a whole can be quickly built, altered, and scaled.

• Independent Development - All microservices can be quickly developed based

on their proper functionality.

www.manaraa.com

16

• Independent Deployment - Based on their services, they can be individually

deployed in any application.

• Componentization - Microservices are treated as independent components that

can be easily replaced and upgraded.

• Business Capabilities - Microservices are very simple and focus on a single

capability.

• Autonomy - Developers and teams can work independently of each other, thus

increasing speed.

• Continuous Delivery - Allows frequent releases of software through systematic

automation of software creation, testing, and approval.

• Agility - Microservices support agile development. Any new feature can be

quickly developed and discarded again.

• Fault Isolation - Even if one service of the application does not work, the system

continues to function [17], [22]

2.5 Decentralization and Distributed

Within this chapter, we have gone over the pros and cons and SOA and microservices

architecture. The main benefits of each allow developers to build specific technical

components; however, microservices allows for quick development, fast deployment, and

team agility.

www.manaraa.com

17

Decentralized team, always need to think, and act as, separate/non-centralized teams.

Distribution of resources, foundations, and standards help to link teams together.

Figure 2-4: Centralized / Decentralized and Distributed

However, according to microservices, agile w/ the use of decentralized teams are the

norm.

According to Martin Fowler, a pioneer of Microservice development, the use of

decentralization is a significant affirmation of agility in microservices development.

According to Mr. Fowler [15]:

“Perhaps the apogee of decentralized governance is the build it / run it ethos

popularized by Amazon. Teams are responsible for all aspects of the software they

build, including operating the software 24/7.”

www.manaraa.com

18

Mr. Fowler also goes forward to state that the decentralization of teams and its

governance is not the norm, but companies are still pushing for this [15].

“Of course, just because you can do something, doesn't mean you should - but

partitioning your system in this way means you have the option.

The devolution of this level of responsibility is definitely not the norm, but we do

see more and more companies pushing responsibility to the development teams.

These ideas are about as far away from the traditional centralized governance

model as it is possible to be.”

In retrospect, with the decentralization of teams and standards, there are many pros. A few

pros of decentralization were mentioned by Mr. Fowler above; however, there are still a

few more. The central abstraction behind decentralization is the delegation of responsibility

of teams and the and the allocation of making decisions across various levels in an

organization.

Decentralization is the opposite of centralization, as where a central command structure

uses a more ‘absolute’ style of management. Decentralization may allow for flexibility and

innovation, and encourage teams to take ownership, but it also can breed duplication of

work as uniformity of organization policies becomes challenging. The work could become

unorganized and possibly create duplication or even holes in standards [4].

To make sure that teams do not have duplication of work, teams, no matter what, must

communicate. Communication, via any decentralized team, is key via any agile

microservice deployment [32].

www.manaraa.com

19

“Agile methods are less about software construction and more about humans

working together and communicating. No matter what field you’re in, there’s

something to learn here.”  - Chad Fowler

Last, if your team and or company are new to the concepts of microservices, or if teams

have not been introducing the governance and standards of an agile structure,

decentralization can provide the lack direction or even spawn security concerns [15].

Even though the decentralization of the team is how the development will be handled via

microservice development/developments, the need for a distributed standard, governance,

and learning methods are still needed to combat any ambiguity that we list above.

However, even distributed models can still have challenges if the right people, processes,

and tools are not in place. Additionally, when governance is distributed, there are still

struggles to produce results if teams are not operating from the same set of principles or

have a shared understanding of project goals.

The need for a hybrid approach and an adherence to best practices and development

standards will help when the distribution is utilized. Also, the need for real-time

communication between distributed team members is critical to getting work done and

building relationships. Last, the addition of proper training and development standards, as

well as best practices, need to be consistently adopted across the teams [1].

Also, with the addition of tool usages, the communication, and impact of optimization are

much more significant. The ambiguity or fragmentation between standards and design will

be abundantly less between groups of decentralized development groups.

www.manaraa.com

20

2.6 Decentralization Organization and Use of Tools

The experience of any good decision stems f rom the team’s ability to want to cultivate and

grow with change. Within a microservice development structure, the decentralized teams

have the ability to create their own group changes, but all teams need to harness the

adjustments to realize a change is needed.

According to Gareth Morgan, author of Images of Organization [28]:

“…the challenge is to find small changes that can unfold in a way that creates large

effects…”

Decentralization and the autonomy of an individual team are balanced by minimal

transformations, that are imposed to keep interdependencies established. Teams are

encouraged to devise, and problem solves issues locally but should also be required to

establish if these problems or patters are seen anywhere else within the teams [30].

However, when creating a team, you need to make sure that you are not duplicating the

existing pain points that have been observed initially, prior to any build. According to

Conway’s law [12]:

“Any organization that designs a system (defined more broadly here than just

information systems) will inevitably produce a design whose structure is a copy of

the organization's communication structure.” – Melvin Conway

The beauty of decentralized microservices team allows for teams to create what best fits

the need of the build or organization, and however, if a team designs the way they feel the

solution to be, and not share or distribute the design, the output is inevitability to be the

www.manaraa.com

21

copy of that team. The issue here is the solution will stay stagnant as the rest of the

decentralized groups, will not see the solution, and most importantly, any pain points

noticed.

System and group behavior are also a result of the process and tools that workers utilize to

perform their jobs. The usage of a decentralized model can lead to skill challenges in the

organization if every team is required to cultivate their own expertise [29].

As we spoke for microservices governance, decentralization is necessary. The

decentralization provides the innovation and flexibility that developers crave while

maintaining the security and reliability that IT operations folks demand. As developers

look to govern applications and teams, to make them more reliable and secure, tools are

needed to facilitate and drive, decentralized governance [31].

A governance model for collaboration could include a very rudimental list of guidelines

explaining what collaboration consists of, what teammates should or should not be openly

collaborating on. Also, a mode, tool, or platform can be dynamically built to accomplish

these goals. Many companies and groups feel this is unnecessary, the openness of the

groups, and how the organization wants to determine their goals [11].

The most crucial consideration is adopting a model that resonates with the overall

organizational structure and corporate culture. Organizations seeking to affect a change

should ensure they are addressing their needs.

When selecting a model to be utilized, a value proposition needs to be determined to

understand how any model will be beneficial for decentralized development teams.

www.manaraa.com

22

Defining the expected outcomes can help clarify the preferred model. The results of

any identified risk or procedures that may be missing during an SDLC build will also

determine what and how models should be constructed and distributed [33].

2.7 Conclusion

Within this chapter, we went over the development usage of SOA and how microservices

have now become the needed go-to development methodology if your company and your

teams are prepared. The usage of decentralized teams and then the need for distributed

standards are a must mix to propel any development. The pos of utilizing a decentralized

team allows for quick, agile development and deployment; however, the distribution of

standards, training, and communication is a must need to deploy any successful release

successfully.

In the next chapters, I will present findings, via survey data, in which not all teams fully

understand what all goes into an exact microservices development structure. We will show

the need for standards to be distributed to make the decentralization development team

successful.

www.manaraa.com

23

Chapter 3

Initial Survey

3.1 Introduction

Within the above chapters, we have gone over the definition and overview of SOA and

Microservices methodologies. It also described the positives and difficulties found within

periodical and written reviews.

Included in this chapter is an initial survey taken, by two companies, who are utilizing the

microservice framework and methodologies to help develop faster developmental

techniques to help with 1) breaking down old monolithic applications/solutions and to 2)

build/create/plan for new builds utilizing agile/API builds.

3.1.1 Reason for Initial Survey

This “survey” is to help understand how and what the development team looks for, in terms

of governance, standards. Also, to see and understand what pain points are, if any, the

developer would like to see changed, fixed, or modeled for better learning techniques.

Within the survey, we gather information to help further understand and retrieve:

• A ‘picture’ of the Microservice development team

• Initial understanding that development has within their current Microservice

process

• What type of governance, if any, the development teams are following?

• What type of governance would the development team like to follow?

• Amass pain points developers are currently running into w/ the loss of governance

and or structure

www.manaraa.com

24

• Understand issues developers need to have addressed

• What possibly can be added to deliver a stronger Microservices: tools, processes,

and or learning models

3.1.2 Companies utilized within the survey

Development participants, from 2 companies, helped with the survey questionnaire. The

participants chosen were developers who are currently working on an agile/microservice

solution within their own companies.

The two companies, within the survey comprised of:

1) Company A

• Industry: Banking solution

• Size of company: 10,000+

• Audience: Developers/PO

2) Company B

• Industry: Digital Publication Services

• Size of company: 5,000+

• Audience/Participants: Developers/DevOps

3.1.3 Survey Short description

The following survey description was provided to each participant who participated in the

survey. Both companies were providing the below survey description in order to give an

overview of the request/questions:

www.manaraa.com

25

In today’s fast-moving developmental needs, many companies, are starting to

dedicate resources and personnel to help, start rethinking the development of large/older

monolithic solutions, by starting to develop separate functional services (microservices).

Because of the speed and flexibility of development, companies are trying to ensure

they have a tightly governed model to help with the creation and completion of these

microservices.

This “survey” is to help understand how and what the development team looks for,

in terms of governance, standards. Also, as a participant, please help list what some pain

points are seen and what should be changed, fixed, and or modeled for better learning

techniques.

Please take a few minutes to help us collect data that will help build an excellent

underlying model/process.

3.1.4 Questions listed from Survey

Each of the 11 below questions has been provided to both companies for feedback. Many

questions follow a multiple-choice request. However, there are a few open-ended

questions, in which we called ‘Free Formed’ answers. The ‘Fee-formed’ survey questions,

provide the participants' written space to answer, ‘open-ended question,’ to aid for a

‘deeper-dive’ answer and description.

Both of these types of questions allow us the ability to understand the overview and

understanding of the participants.

www.manaraa.com

26

1) Survey Question #1 – Current Developmental structure

Q1: Within your current developmental structure, is there a robust and well-defined

governance model/framework that, you as a developer member, follow for every

Microservice build?

Q1: Survey’s answer choices:

a. Yes

b. No

2) Survey Question #2 – Governing Body

Q2: How important is having a ‘governing body’ define the structure and outcome

of the Microservice?

 Q2: Survey’s answer choices:

a. Very important

b. Median importance

c. Low in the priority of a build

3) Survey Question #3 – Owner of Microservice

Q3: Once a Service/API is built and completed, who should own the Microservice

after the build (ex. Corrections, additions)?

Q3: Survey’s answer choices:

a. Project Manager

www.manaraa.com

27

b. Scrum Manager

c. Developer who built service

d. Client – Product Owner

e. Run Team

f. Agile Team

4) Survey Question #4 – What standards does a developer need

Q4: As per discussion, your API/Microservice team, is currently working on API

governance standards. Standards such as - Naming conventions, Versioning rules,

and JSON validations, etc. What other standards would API/Microservices

developer, like to see implemented?

Q4: Survey’s answer choices:

Free Formed answer (open-ended question for a deeper-dive answer and

description to answer)

5) Survey Question #5 – Advantages of Microservices

Q5: What are the advantages of Microservices?

 Survey’s answer choices:

a. Independent Development

b. Independent Deployment

c. Fault Isolations

d. Mixed Technology Stack

www.manaraa.com

28

e. Granular Scaling

f. All of the above

6) Survey Question #6 – Current following Centralized or Decentralized

Q6: Does your developmental group follows a Centralized to Decentralized

governance framework when it comes to building out Microservices?

 Q6: Survey’s answer choices:

a. Centralized: decision-making authority lies with a group or individual at

the top. The other members of the organization then work to carry out the

decisions made by top-level leaders

b. Decentralized: many decisions are made by mid-level or lower-level

users

7) Survey Question #7 – What Governance Framework

Q7: What governance framework would you like to see utilized?

Q7: Survey’s answer choices:

a. Centralized

b. Decentralized

c. Hybrid

www.manaraa.com

29

8) Survey Question #8 – What needs addressing

Q8: What do you feel, still needs to be addressed when it comes to API

development, especially when building microservices?

Q8: Survey’s answer choices:

Free Formed answer (open-ended question for a deeper-dive answer and

description to answer)

9) Survey Question #9 – Addressing Current Pitfalls

Q9: What pit-falls, as a developer, do you feel that you run into and that needs to

be still addressed from an API/Microservices Point of View?

Q9: Survey’s answer choices:

Free Formed answer (open-ended question for a deeper-dive answer and

description to answer)

10) Survey Question #10 – Level of Governance

Q10: What level of governance would you, as a developer, working on

Microservices, like to see?

Q10: Survey’s answer choices:

Free Formed answer (open-ended question for a deeper-dive answer and

description to answer)

Survey Question #11 – “Learning Model” Requested by Developer

www.manaraa.com

30

Q11: If a "learning model" from a governance POV is to be built/constructed,

what from the below feature selections, would you as a developer like to see

expanded... that would better help you perform your job?

Q11: Survey’s answer choices:

a. Process

b. Tools

c. Versioning

d. Continuous Integration

e. Continuous Development

f. Team structure

g. None

3.1.5 Outcome of Survey

Each survey question, either be a multiple-choice and or ‘free Forme’ questions, was

quantified and present within a graphical chart. Charts help quickly decipher the output

and garner usable data to start generating a conclusion and help push research.

Understanding the developmental needs, pitfalls, and current usage of microservices, this

will again strengthen our research methodology and gather venerable data.

www.manaraa.com

31

1) Survey Answer #1 – Current Developmental structure

Q#1: Question: Within the developmental structure, is there a robust and well-defined

governance model/framework that, developer members, follow for every Microservice

build?

Q#1: Observation: The below charts allow for a profound understanding that both

companies do not align with a ‘true’ decentralized model that developers should follow if

wanting to deliver in a Microservices developmental method.

Q#1: Output from multiple choice answer:

Figure 3-1: (Company A) Survey Question #1

www.manaraa.com

32

Figure 3-2: (Company B) Survey Question #1

2) Survey Answer #2 – Governing Body

Q#2: Question: How important is having a ‘governing body’ define the structure and

outcome of the Microservice?

Q#2: Observation: Within these below data gather, both companies made it confident that

a governing body is needed within their organization to be followed. The data is essential

as the participates are stating, even if decentralization is favored, a type of governance is

critical to follow.

Q#3: Output from multiple choice answer:

80%

20%

Is there a well defined governance model ?

Yes No

www.manaraa.com

33

Figure 3-3: (Company A) Survey Question #2

Figure 3-4: (Company B) Survey Question #2

3) Survey Answer #3 – Owner of Microservice

Q#3: Question: Once a Service/API is built and completed, who should own the

Microservice after the build (ex. Corrections, additions)?

Q#3: Observation: Question three was to get a good understand of pure ownership of code.

The survey data shows, for certainty, there is a need for governance around ownership,

within decentralized teams. However, the findings made it very clear that both companies

(A and B) are not in agreement with whom 1) owns Microservice service, 2) the API, 3),

or even the code after the development is completed.

91%

9%

0%0%

20%

40%

60%

80%

100%

Very important Medium Importance Low Importance

Importance of having a Governing Body?

60%

20% 20%

0%

10%

20%

30%

40%

50%

60%

70%

Very important Medium Importance Low Importance

Importance of having a Governing Body?

www.manaraa.com

34

Both companies do list a percentage, that the developer should own the code, but may

participants appear to say otherwise. Inconsistency garners there is a problem within the

teams, and if the teams understand the standards, and also if the teams are aligned.

Q#3: Output from multiple choice answer:

Figure 3-5: (Company A) Survey Question #3

Figure 3-6: (Company B) Survey Question #3

27%

0%

27%

18% 19%

9%

0%

5%

10%

15%

20%

25%

30%

Project
Manager

Scrum
Master

Developer
that built

service

Client -
Product
Owner

Run Team Agile Team

Whom should own service, after built?

0%

10%

20%

30%

40%

50%

60%

70%

Project
Manager

Scrum Master Developer
that built

service

Client -
Product
Owner

Run Team Agile Team

Whom should own service, after built?

www.manaraa.com

35

4) Survey Answer #4 – What standards does a developer need

Q#4: Question: As per discussion, your API/Microservice team, is currently working on

API governance standards. Standards such as Naming conventions, Versioning rules, and

JSON validations, etc. What other standards would you, as an API/Microservices

developer, like to see implemented?

Free Formed Answer Q#4: Please see below for output given by developers on what

aspects they would like further discussion on as well as standardizations.

Q#4: Observation: Below updates, from both companies, describe the importance of

standardizations, rules to follow, and a good picture of what is needed to strength en a

typical developmental release. The two companies state many items need to be talked about

and vetted, the best they can, to provide a standard(s) for development.

Q#4: Output from the free-formed answer:

Table 2: (Company A) Survey Question #4

• Need Strong rules on usage

• If a microservice is developed, by multiple teams, and the developers are
creating business services on top of that data service, there is no real picture
of the usage of the service

• Should implement more robust governance around usage

• Security standards, around access, to the service (tokenization) is to be the
most critical aspect of standardizing microservices

• Security Standards especially for Internal APIs

• Need to have control on release process for all API/microservices

• Release project broad in Agile JIRA program to be added

www.manaraa.com

36

• Check/list procedures to make sure governance process being followed

• Standards on Database connections from architecture POV

• Domain-driven pattern implementation will be helpful

• Pivotal Cloud Foundry (PCF) Standards and guidelines

• Service Ownership

• Security Standards – like a set of rules to follow while developing services

• Maintaining a 3rd party/open source libraries should be used when
developing microservices

• Packaged Structure also needed to maintain standards during the build

Table 3: (Company B) Survey Question #4

• Define team for microservice ownership

• Once delivered what standard or whom will monitor the service

• Asynchronous messing techniques to be used (define and list)

• Control on open source tools

• Overview of size/number of services

• Tokenization needs to be standardized

• Containerization list

• Logging standards to be laid out to help troubleshooting/usage

• Share pattern recognition if the team(s) find or runs in to

• Authentication standards

www.manaraa.com

37

5) Survey Answer #5 – Advantages of Microservices

Q#5: Question: What are the advantages of Microservices?

Q#5: Observation: Each answer below, follows the true aspects and needs for utilizing the

Microservice's developmental methodology. Developers and the agile team look for ease

of development and deployment, granular scaling, and a way to choose their own

technology to allow for fast deployment. These benefits purposefully follow a solid agile

build but also bring the ownness to the team to provide and follow a string methodology.

Q#5: Output from multiple choice answer:

Figure 3-7 (Company A) Survey Question #5

9% 9%
0% 0% 0%

82%

0%

20%

40%

60%

80%

100%

Independent
Development

Independent
Deployment

Fault
Insolation

Mix
Technology

Stack
Development

Granular
scaling

All of the
Above

What are advantages of Microservices?

www.manaraa.com

38

Figure 3-8 (Company B) Survey Question #5

Survey Answer #6 – Current following Centralized or Decentralized

Q#6: Question: Do you feel your developmental group follows a Centralized to

Decentralized governance framework when it comes to building out Microservices?

Q#6: Observation: As described in Chapter 1, ensuring the use of a Microservice

deployment, the ownership, and framework, will be led from a Bottom-Up approach.

A bottom-up approach is the piecing together of systems to give rise to more complex

systems, thus making the original systems sub-systems of the emergent system. The

bottom-up approach (developer owns and builds) is vital for a Microservice build/team, as

it allows for quicker development and deployment. [7].

From the answers garnered below (Figure 3-9 and Figure 3-10), both companies are not

aligned, organized, and no real universal governance has is defined. No defined approach

will cause communication and risk mitigations to suffer if teams are not aligned with which

methodology/framework they will follow.

20%

40%

0%

10%

20%

30%

40%

50%

Independent
Development

Independent
Deployment

Fault
Insolation

Mix
Technology

Stack
Development

Granular
scaling

All of the
Above

What are advantages of Microservices?

www.manaraa.com

39

Q#6: Output from multiple choice answer:

Figure 3-9 (Company A) Survey Question #6

Figure 3-10 (Company B) Survey Question #6

6) Survey Question #7 – What Governance Framework

Q#7: Question: What governance framework would you like to see utilized?

60%

40%

Your organization - using Centralized or
Decentralized Governance Framework?

Centralized (Top -Down) Decentralized (Down - Up)

www.manaraa.com

40

Q#7: Observation: Established within Question 6, both companies were requested to

state what type of governance framework, they are following, within their Microservices

development process.

From the below data gathered (Figure 3-11 and Figure 3-12), an overwhelming observation

can be seen. Less than 30% of both companies feel they are following a decentralized

methodology, and both companies state they are following a ‘Hybrid’ approach to their

Microservices development.

These observations bolster the question of why decentralized teams and governance are

not working. It also brings to question, what more can be done to follow and strengthen

standards for these companies.

Q#7: Output from multiple choice answer:

Figure 3-11 (Company A) Survey Question #7

46%

27%

27%

Governance framework, liked to be utilized?

Centralized Decentralized Hybrid

www.manaraa.com

41

Figure 3-12 (Company B) Survey Question #7

7) Survey Answer #8 – What needs addressing

Q#8: Question: As a being part of the Microservice project, what still needs to be addressed

when it comes to development, especially when building microservices?

Q#8: Observation: Below updates were provided by developers who are expressing what

they feel needs addressing. The list of below requirements demonstrates that many

standards need addressing. Observations should be shared and delivered to each

decentralized team, to allow for maximum understanding between the teams.

As Microservice development, handles many moving parts, there is a strong need in which

developers need strong team leadership, also requesting to robust user stories, help with

developmental tooling, and other standards. The output of this question describes the

enormity of a build and the need for standards in an agility build.

However, the participants embrace the quick decentralized agile approach, but the feedback

also reveals that many standards need to be followed.

www.manaraa.com

42

Q#8: Output from the free-formed answer:

Table 4 (Company A) Survey Question #8

Cataloging would cut down on redo’s

Currently, most of the agile teams are not aware of a lot of API’s what is already
available

Needs to be a list of APIs, so PO’s are aware

Dev portal infrastructure for Internal API’s

Consistencies for 1) Tooling and 2) Contract design

Need Clarity on requirements w/ proper acceptance criteria and user stories

Need improvement on the flow diagrams and architectures

Generate a list and share test scripts with developers

PCF (Pivotal Cloud Foundry) services need to be more valuable and access to both
QA/DEV environments

Automation of test scripts needed to reduce regression and QA efforts

Technical decisions/Functional discussion have to be taken at the initial stages of the
development so that the flow and governmental standards go parallel between teams

Sharing Technical decisions/Functional discussions will make teams work more efficient
if there are many changes in between that they need to be aware of

Need to have a STRONG BA (Business Admin) who has complete knowledge about the
functionality of the build

Security Standards

Required some learning sessions on best practices for security output and
standardizations between teams

• Knowledge sharing for new tools/open source - Coding and Best Practices

• Need to follow some form of template project with default functionality to make
development time faster

• Need to have documentation on security, CI/CD before starting any new
microservice build

www.manaraa.com

43

Table 5 (Company B) Survey Question #8

• API-First driven design

• Challenge is freedom for mixed technology stack can create challenges in
hiring/learning/collaboration/retention, to solve this we need help standardizing
on our tech stacks and governance

• Microservices taking away operators’ complexity and increases development
complexity. In microservices, we need to be careful about how small service
needs to because it is easier to split service apart but VERY difficult to combine.

• Domain-Driven Design helps during microservices design

• Another challenge is in order to deliver the particular business value it needs to
touch multiple microservices resulting in multiple teams and to solve this we had

to create a solution team covering multiple departments

8) Survey Answer #9 – Addressing Current Pitfalls

Q#9: Question: What pit-falls, as a developer, do you feel that you run into and what needs

addressing from an API/Microservices Point of View?

Q#9: The data provided below (Table 6 and Table 7) were a tremendous help to understand

the actual pitfalls that the development teams are currently facing. The below data points

allow defining issues that need to be looked at, addressed, and turned into a learning

tool/model.

Both companies A and B requested standards, precise requirements, and for the standards

to be shared between teams.

The decentralized team mostly works in a siloed approach; however, the below

observations are requesting the distribution of standards, vulnerabilities, and notification

of changes, need to be communicated.

www.manaraa.com

44

Q#9: Output from the free-formed answer:

Table 6: (Company A) Survey Question #9

Few standards are missing: Including when we need them

• Security

• Vulnerability issues

• Logging standards

How can we stop and learn as we grow? Are there models that can be followed as
learning tools

Changes in requirements and how can we implement them, and keep track

We need a very strong PO (Product Owner) and Scrum Master, who has a clear idea of
the objectives that need to be achieved.

Goals need to be laid out before a decentralization of teams

Need collaboration between both Product Owner and Scrum Master

Ownership of services (both tool and builder)

We have started working on the Microservices, but Development standards change
frequently, once we are finalized with the standards, we can avoid rework on the same
services.

Table 7: (Company B) Survey Question #9

Challenge is freedom for mixed technology stack can create challenges in
hiring/learning/collaboration/retention, to solve this we need help standardizing on our
tech stacks and governance

Microservices taking away operators’ complexity and increases development
complexity. In microservices, we need to be careful about how small service needs to
because it is easier to split service apart but VERY difficult to combine. Domain-Driven
Design helps during microservices design

Another challenge is in order to deliver the particular business value, and it needs to
touch multiple microservices resulting in multiple teams, and to solve this, we had to
create a solution team covering multiple departments.

www.manaraa.com

45

9) Survey Answer #10 – Level of Governance

Q#10: Question: What level of governance would you, as a developer, working on

Microservices like to see?

Q#10: Observation: The below answers allow for a step now into what standards need

following. The data gather, demonstrates a need and a wanting for the creation of standards,

also ownership to take place, as well as sharing (distribution) of knowledge to occur

throughout projects (Development, Deployment, and Monitoring)

Q#10: Output from the free-formed answer:

Table 8: (Company A) Survey Question #10

Standardization for:

• Hosting

• Tokenization

• Access security

• Input validation

• Naming conventions

Control on:

• Coding Standings

• Code review process

• Requirements

• Design

Multi-level standards to share with teams should be fine

Share existing level of governance

Standardization and ownership

Functional and Architectural level decisions if we can be taken before starting the sprint
development, will be helpful to complete the sprint on time and deliver more effective
productivity

Decentralization of team to work together

www.manaraa.com

46

Table 9: (Company B) Survey Question #10

REST API Design best practices

Initial design about microservices like how small microservice needs to be and specific
criteria to follow while creating microservice. If domain driven design used, then more
specific guidelines around bounded context and domains to decide.

Considering latest tooling for logging, monitoring and alerting, as there is scope to
reduce traditional responsibilities like performance testing, end to end testing but we are
still doing both as well as security within the MS

Initial design about microservices like how small microservice needs to be and specific
criteria to follow while creating microservice. If the domain-driven designs are used,
then more specific guidelines around bounded context and domains to decide.

Considering the latest tooling for logging, monitoring, alerting, There is scope to reduce
traditional responsibilities like performance testing, end to end testing, but we are still
doing both.

Practices for change of Authentication

10) Question #11 – “Learning Model” Requested by Developer

Q#11: Question: If a "learning model" from a governance POV was to build/construct,

what from the below feature selections, would you as a developer like to see expanded...

that would better help you perform your job?

Q#11: Observation: The culmination of the survey questions, the request for opinions on

developmental needs, wants, and pitfalls, helped to garner information on what can be

corrected or built. This information can help drive exceptional information to help inform

a microservice developmental team.

www.manaraa.com

47

The below output allows for the developmental teams to understand what developmental

areas need better tooling, learning models, and techniques in order to succeed.

Q#11: Output from multiple choice answer:

Figure 3-13: (Company A) Survey Question #11

18% 18%

28%

18%

0%

9% 9%

0%

5%

10%

15%

20%

25%

30%

Learning Model needed/requested

www.manaraa.com

48

Figure 3-14: (Company B) Survey Question #11

3.2 Outcome of Survey

The outcome of the initial surveys demonstrated that the developers need a reliable

governance standard, but a lack of understanding of where and how governance should be

addressed.

Below are a few points outcomes/lessons which need addressing:

20%

0%

20%

0% 0%

60%

0%
0%

10%

20%

30%

40%

50%

60%

70%

Learning Model needed/requested

www.manaraa.com

49

3.2.1 Governance Standards

a) Standards not finalized

• Per the survey, more than ½ of the developers that feel they are using centralized

governance mythology and the other ½ feel they are following a decentralized

methodology while developing Microservices

• However, the same developers are still requesting that they see many

inconsistencies that need addressing

• Developers are requesting standards to be fully/partially vetted throughout the

process (follow correct standards/governance)

• Developers are requesting a Hybrid approach (between centralized and

decentralized) to understand how governance should be followed

• 60% of developers are not comfortable when governance issues need to be

addressed or taken care of, within the development process

• Collaboration is either slow or non-existence between the decentralization of a

development team

b) Lessons to be learned:

• A fluid-hybrid approach is required to keep all agile developers, updated with

ever-changing standards, in a project

• Microservices development standards and team-leadership need deciding, and

before the start of development, this will help with sharing ideas and will support

significant application development to build modular services

• Deployment Instructions needed

www.manaraa.com

50

• Technical and functional requirement changes are needed before the start of a

sprint/project.

• Collaboration drives the fluidity of a development team

• Standardization, between the team, helps with rework

3.2.2 API Ownership

a) Lack of Ownership

• There is no definitive answer on whom should “OWNS” the fully developed

service/API

• Lack of ownership can cause the services to become stale or also can cause issues

with Versioning, naming, and standardization

• Lack of ownership will slow the process

• Coding standards and checks will suffer if no centralized owner

• If developers do not understand the standardizations or team structure of a true

Microservice Methodology, then then the correct Microservices framework will

not follow the ever-needed agility, reuse, building efforts.

b) Lessons to be learned:

• Agility between development teams happens from a “Bottom-up” development

approach (developers build and owe)

• Within a true Microservice agility decentralized team approach, the developer is

required to create, own, maintain, and govern the services that they build.

• Model/Lists need to be built before deployment, for processes/governance

www.manaraa.com

51

3.2.3 Security Rigger: Hard to follow w/in a decentralized development team

a) Lack of Standards

• Developers, within the survey, stated security standards are most likely to suffer if

developers do not follow a process within teams that are not centralized

(decentralized), but still, need to be agile

• Standards are missing, no way to track changes

• No central contact or a way to share requirements (teams are siloed, no

communication

• If risk how to check if another team

• Over accountability

b) Lessons to be learned:

• API Standards / Best Practices / Naming conventions: setting up standardize

criteria is crucial, (before, during and after) the build

• Keeping the entire all decentralized development teams updated w/ latest

changes, is a must to keep the developers/project members updated.

• CI/CD is crucial to developing an agile

• Standardization help w/ ease of troubleshooting

• Risks tracking and validation needed

• Clarity of security standards, between all phases of the build, is crucial

• Simplify documents and share between team

• Keep agile, but have communication

www.manaraa.com

52

Chapter 4 Research

4.1 Chapter Introduction

Interesting findings demonstrate, standardizations in security, ownership, governance, and

control are needs and requested on the behest of developers within the survey in chapter 3.

In order for Developers to make sure they are developing with similar standards, as well as

utilizing the agility of microservice standards, their needs for a plan to request learning

tools, checklists. These procedures will help guide the developers and distributed standards

between teams. These tools and models will help to ensure the decentralized teams are

following some standardization of governance, be it security, ownership, or control.

4.1.1 Research and Setup

Through this research, we aim to establish a basic understanding of the definite need for

agility in microservice development in order to breakdown large monolithic solutions to

create and reuse critical services easily.

The research will allow for the rethinking of the dedication of standardized governance

that needs to be dispersed and understood via the multiple decentralized teams that are so

critical in the practical need for microservices development and success.

We will ensure that developers' education is of the utmost importance. The models and

approach we will confirm developers are educated well prior to the build ever starting.

www.manaraa.com

53

4.1.2 Experimental procedures

Thought-out this and the next chapter (Chapter 5), the research goes through the

construction of a few tools to aid developers with an awareness that distributed

communications, risks, and mitigations are essential for decentralized teams.

The basis of the research was to gather information, via survey outputs and literary reviews,

to assemble evidence and build procedures that will aid in the abilities for developers to

design successful builds, utilizing decentralized teams.

This research utilizes simulated data to garner information to produce real-world examples

and presents the benefits of the designed tools. The paper uses simulated data within both,

newly created Team Readiness Distributed Security Standard Matrix Tool and the

Distributed Security Standard Metrix Tool to simulate the need and benefits of these tools

with decentralized teams via development.

To appropriately take advantage of this research, one would first select a project where

their development methodology would abide by employing a decentralized team within an

agile build. Before development, each decentralized team would need to recognize non-

communication or lack thereof would be a deterrent to a successful agile build.

For each project, each decentralized team would utilize the created ‘Team Readiness

Distributed Security Standard Matrix’ (see ‘Figure 5-1’) to garner information to exhibit if

and how prepared each decentralized agile team is and if there are ready to develop. Each

team would select their maturity level and would need to distribute their findings to each

decentralized team. The finding allows for each team to understand what maturity levels

the other needs to be successful at a particular moment within a build.

www.manaraa.com

54

Second, the decentralized teams would also execute the procedures within the

‘Distributed Security Standard Metrix Tool’ (see ‘Figure 5-9’). Just as with the ‘Team

Readiness Distributed Security Standard Matrix ,’ each team select their security maturity

level and would need to distribute their finding to each decentralized team. The purpose

of this is to allow all teams to be aware of each team’s maturity level and if all teams are

on the ‘same page.’

Research has shown that the lack of maturity and risk communication can cause issues and

delays between each decentralized team, which can cause many different teams to not be

in sync with each other.

Within this paper, models have been built to signify the need for a formation of standards.

Thought-out this and the next chapter (Chapter 5), the overview of each tool and model has

will be over in detail.

4.1.3 Learning Tools and Model overview

Based on the procedure and output from survey answers as well as literary research, this

project will focus on two Risk and Readiness tools as well as two Learning models.

Each tool will be presented with:

• Overview/instruction of the tool

• Why the tool is useful

• Data analytics to better understand the benefits of the outcome for the developer.

In retrospect, each tool and or model will exclusively provide different models to quantify

the importance of the data gathered.

www.manaraa.com

55

4.2 Tools / Models built

Each of the below will represent data, and setup tools, to allow developers and DevOps to

focus on specific standards that are needed to perform positive decentralized team

management and governance.

Each tool and learning model will provide the needed governance that should be distributed

between the decentralized dev teams.

From the output of the survey, in Chapter 3, the focus will be on:

1) Creation of Agile teams

2) Security readiness and possible risk

3) Creation of models that can are to be followed at every point of development

4.2.1 Overview of Tools built

Below are the two Risk and Readiness tools / Learning models built. Each model provides

a separate overview of standards that need to be focused on, as well as supporting models

to strength support

4.2.2 Team Readiness Distributed Security Standard Matrix Tool

The developmental reason for the creation of this matrix is to help create, form, display,

and instruct on how an Agile team is behaving and maturing. This tool is to be used to

make any adjustments in an agile way, and not to deter any production or solution that is

has been developed.

www.manaraa.com

56

The structure of a team, be it centralized and or decentralized, but still need a central

readiness to ensure the teams and structure are mature and reliable.

4.2.3 Distributed Security Standard Matrix Tool

The purpose of the tool is to assess the security health for each decentralized microservice

team of developers. This tool can be shared between teams or the DevOps Manager to

provide an update of the health for the entire team.

4.2.4 CDAD (Characterize, Diagnose, Anticipate, Distribute) Learning Model

Based on each matrix, the learning models are to help combined the learnings 1) the

survey, 2) the output from the primary and supporting models, and 3) gathering of all

learnings.

The main goal is to have a repeatable description and steps involved in the acquisition of

new skills and knowledge. Also, a way to engage all learned components to encourage and

facilitate others.

4.2.5 Dev-CDAD-Prod Model

Based on the CDAC Model, the building of a Security DevOps structure was built

dynamically to understand which main deliverables will help drive which standards. Also,

what type of distributed governance is required during each SDLC development phase of

a project.

www.manaraa.com

57

4.3 Sub-models

Sub-models are importing and distinct part of explaining, supporting, and deep-diving into

a more extensive or primary model.

Within our research, the four metric/learning models will allow teams to gather pertinent

data. The sub-models, list below will allow diving deeper into how to use and harness the

data rendered.

4.3.1 Mind map and Standards

Initially, standards are provided in a documentation format, and it is the terms of the

developer to follow or not follow the requests.

While working with developers, the act of documentation standards, the developers wanted

two things: 1) Clear concise outlines, and 2) visual analysis.

Radar Charts

As developers are searching for a comprehensive method to understand if they had planned

for or met their governmental standards, we have built and introduced a Radar Chart to

graphically display multivariate data by compiling data in the form of a two-dimensional

chart.

The chart allows for quantitative variables represented on axes starting from the same

point.

4.3.2 Scatter Charts

Utilizing the same data for the Radar Map, a DevOps Manager or IT Program Manager can

utilize the chart data (XY chart) to show find out if there is a strong/weak relationship. The

www.manaraa.com

58

chat will show data security levels that each team believes that they matched and can

visually see if the team hit the mark/target set at the beginning of the build.

Each team can easily see and plot their data for each security area and understand if they

hit or missed the mark.

4.3.3 Heat Maps

A heat map is a graphical representation of data where the individual values contained in a

matrix, which are represented as colors. The usage of Heat Maps in our research will allow

for a quick quantifiable view of data to focus quickly and accurately on a subsection of

data. Analytics will allow us to deep dive into understanding the underlying data.

4.4 Data Analytics

Just as models and supporting sub-models are essential, the usage of data analytics help to

inspect cleanse, and transform modeling data.

Amidst the data rendered, the goal of discovering useful information, and coming to

conclusions, help support and defend decision-making.

Throughout our research, we have utilized two data modeling tools to help build and gather

data.

The two tools that were instrumental in architecting, rendering, and data minding, all

finding, are Microsoft Excel as well as Tableau Software.

www.manaraa.com

59

4.4.1 Microsoft Excel

Excel was utilized to created presentable tables, allowing research data to be arranged via

actionable tables (rows and columns). These data points helped wield mathematical data

points, as well as utilize relevant graphs to view research data in other formats.

4.4.2 Tableau Software

Tableau is a data analysis/analytic tool that guides the transformation of data into

actionable insights. The software grants a researcher to explore analytics, via workbooks

and dashboards, to allow for ad hoc analyses.

Tableau will allow a decentralized team, easily share work with anyone, as well as easily

make an impact on the company’s business. From global enterprises to early-stage startups

and small businesses, Tableau is a data analytics tool to help view and understand their

data [14].

www.manaraa.com

60

Chapter 5 Metrix and Learning Models

5.1 Introduction

Within this chapter, we deep dive into each Metrix, and the Model will be represented,

explained, and visually shown. The overview will start with the purpose of the model, and

a dive deeper into the understanding, as well as for instructions on how to utilize. Last will

be actual screenshots of the tool, and the data analytics utilized within Excel and Tableau.

5.2 Agile Readiness Risk Grid

5.2.1 Purpose

The purpose of the Agile Readiness Risk Grid is to assess the agility health of an

organization's team.

5.2.2 Overview

The Agile Readiness Risk Grid is to be utilized to help create, form, display, and instruct

on how a Group Agile team is behaving and maturing. This tool is to be used to make any

adjustments in an agile way and not to deter any production or solutions that may have

developed.

If a team is a centralized team, this makes things more manageable, and all standards,

goals, and deliverables are to follow one core process.

Microservice: As teams are requested to be decentralized, this tool is to help distribute

standards between teams. The need to keep all team(s) (centralized or decentralized) in

constant updates on team maturity.

www.manaraa.com

61

5.2.3 Instructions

The Agile Readiness Risk Grid is designed to team dynamics and readiness and to are

following and how mature and if any risks seen.

The instructions are as follows:

1. In the 'Team' sheet, please assign a rating in the 'Current Level' field based on the

health levels that you as a developer feel you are currently at

 a. Hamper (0)

 b. In Transition (1)

 c. Supportable (2)

 d. Strong (3)

 e. Optimal (4)

2. Place the desired health level in the 'Target Level' field. The level will monitor and

identify areas of improvement.

3. Place notes in the 'Comment' field to show what is needed and how to reach desired

goals.

4. Once completed, review the 'Radar Chart'; the teams can check all security standards.

NOTE: (1) The RED line represents your maturity level. For optimal maturity, the RED

line should reach the outer rim of the chart.

 (2) The BLUE line represents the CURRENT level that the single distributed

team believes they are nearest to. The BLUE line represents the current maturity snapshot

where the team currently resides

5. Additional analytics are utilized from the data created from the tool.

www.manaraa.com

62

5.2.4 Agile Readiness Risk Grid Instructions for Microservice

Figure 5-1: Illustration: Agile Readiness Grid Instructions

5.2.5 Team Agile Risk Grid Worksheet

Within the Agile Readiness Risk Grid tool, the purpose is to allow decentralized teams to

prepare and collaborate to ensure a proper team is developing strategies that are needed.

1) Section 1: Agile Groups and Areas

The worksheet is broken down into 6 ‘Agile Groups,’ and each group will have a particular

‘Agile Area’ that coincides with the Group. This area will require a current level of

preparation to understand the readiness of each. Data can be rolled up to view data at each

group. The data is to show a picture of an agile team/activity readiness.

Please see below within ‘Table 10’, is a hierarchy of the break-out of these the Agile

Groups, with associated Agile Area.

www.manaraa.com

63

Table 10: Illustration: Agile Groups and Agile Areas

Agile Group Agile Area

1 Team

Agile Methodology

 Teamwork

 Co-location

2 Project Initiation

Team size

 Dedicated team

 Colocation

3 Definition of Scope

 Key Roles for Script

SME and PO
Non - Development team

Definition of done

 Story size

Backlog grooming

4 Agile Standards

Sprint Meetings

(Grooming, Stand-up, Triage)

 Team/Project Retrospectives

 Requirements understood

 Risk Mitigation

5 QA Agility

 Scope of testing

 Unit testing / Code Reviews (software)

Automation

(software)

6 CI/CD

 Continuous Integration

 Continue Development

www.manaraa.com

64

2) Section 2: Readiness Levels

Every Agile Area, within an Agile Group, will be assigned a rating in the 'Current Level'

field based on the health levels or the below readiness levels.

Each readiness level (0-4), demonstrates, how prepared an Agile Area is. The end game is

to share the updates and overview of each group, to allow for the team’s view status.

In the next section, Section 3, each team will use the below to Readiness Levels to fill in

and update, what current level and targeted maturity levels they want to ascertain.

Table 11: Agile Readiness Levels

Agile Area
Hamper

(0)
In Transition

(1)
Supportable

 (2)
Strong

(3)
Optimal

(4)

Agile

Methodology

Not yet doing

or being
Agile.

 Agile

Methodology
selected:
 - Scrum
 - Kanban

 - SAFe
 - XP

The team is

comfortable
with agile
methodology.
Any

improvements
needed to
address, the

team can
speak up

The

methodology
can is utilized

Actively

utilizing
methodology,
and able to
decipher next

moves

Teamwork

Non-existent Improvements
happening

Team able to
navigate
teammates

and their
expertise

Team >80%
comfortable

Teams, be it
centralized or
decentralized,

there is no
coercion. Team
is devoted

www.manaraa.com

65

Colocation

Team
members
have very

little
proximity to
each other.

Plans are in
place to move
team members

as close to each
other, as is
currently
feasible.

Most team
members are
accessible to

any other
team
members

No issue with
co-location as
communication

solutions are in
place

No need to
worry about
the team, if

internal or not.

Team size

The team

selected but
no dedicated
team has
been finalized

or selected

Understand the

need for more
manageable
teams are
needed

The smaller

team are
started to get
finalization,
now that SME

and
technologies
are finalized

Teams, be it

centralized or
decentralized
are now are a
manageable

size
<10

The ideal size

of the team
(developers,
PO, Scrum
Masters) are a

finalized unit
8-10
teammates

Dedicated
team

A team may
be on
multiple
teams at this

moment

The team are
now ramping
off older project
but and more

then >60%
dedicated to
this agile

project

Enough team
members are
on a team to
support

process (but
risks do occur)

 >80%
dedicated to
this agile
project

Most people
are 100%
allocated to the
team.'Bench'

created or any
possible
resource

movement/loss
(PO, QA,
Scrum)

Colocation

Team
members
have very

little
proximity to
each other.

Plans are in
place to move
team members

as close to each
other, as is
currently
feasible.

Most team
members are
accessible to

any other
team
members

Most team
members sit
within hearing

distance of
each other

Most team
members are
sitting in a

team area
together.

www.manaraa.com

66

Key Roles for
Script

No dedicated
team

No dedicated
team, but the
team finalized.

The team does
have a
dedicated

proxy to
converse with,
but the final
team had not

finalized

The team has
full knowledge
of project

deliverable

Scrum Master,
Product Owner
Developers and

Quality
Assurance,
Stakeholders,
are well

defined

SME and PO
Non -

Development
team

No one at this

time

PO shared

between
multiple
projects

The team is

now intimately
regulated with
the team’s
product

management
needs.

Dedicated SME

and PO now a
part of the
team and
contributing to

open
questions,
triage issues,

and possible
scope creep
mitigation
issues.

Quality rapport

and alignment
between the
Product Owner
and team are

now moving
well and can
answer

concerns,
which are now
answered by a
dedicated PO.

Definition of

done

Not definition Each Scrum
Team has its

definitions, and
there is no
standardization
between teams

Collaboration
is happening

between
teams to
understand
the definition

of DONE

Definition of
Done has been

shared
between team,
and acceptance
if the definition

has shared
between Sprint
Team

The
assessment of

Done has is
final. All User
Story's follow
the same

acceptance
critical to make
a story
"DONE."

www.manaraa.com

67

Story size

Not definition T-Shirt / Sprint
Poker is in
progress, but

no store sizing
finalized

Developers are
now able to
break down

Size and
update User
Stories

Epics and User
Stories
finalized and

developers can
break down
requirements
enough to

complete
deliverables
w/in the

allotted Script
window

Stories now are
finalized with
the timing

needed to
progress w.
Script. No
questions.

Backlog

grooming

No stories
have
groomed and

ready, this
means no
deliverables

can start
within the
next Sprint

Backlog
grooming
started but

impeding
within the
current Sprint

>50% of
stories
groomed and

ready for
development

>80% of stories
groomed and
ready for

development

Developers
have ample
stories

groomed and
ready for
development.

Sprint
Meetings

(Grooming,
Stand-up,

Triage)

Not being
held

Meetings held,
timing or
regularity not

set yet

The team now
ready for
permeate

meetings.
 All Scrum and
project
meetings have

been finalized
and defined.
However,

timing is not
being followed
as meeting are
not mature

Team >80%
comfortable
with adoption

Adoption of
meeting at
regular

intervals and
timing kept

www.manaraa.com

68

Team/Project
Retrospectives

Not being
held

Meeting are
held, only, if
there is enough

time

Actions are
being written
down.

However,
actions/follow-
up have not
been

prioritized and
slated to be
addressed.

The team
understand the
value of a

retrospective
and
understand
mitigation plan

are needed to
move FW to
deliver a

valuable
solution.

A typical
meeting, a part
of any Sprint

/Project
deliverable

Requirements
understood

Business
Requirements

are still
needed
finalizing by
Bossiness

SME/Owners

Scenarios and
Business User

cases designed
off of original
documentation.
Developers can

move FW, but
scope creep
may happen

Use Cases
finalized.

Developers
can start to
wring Agile
Epics and User

Stories and
Sub Stories.
Developers

can start to
enter into
Agile
Tracker/Agile

SDL tool
(example:
JIRA)

Developers
understand full

Business
requirements

Epics, User
Stories, and

Sub-Stories are
now all mature
and able to be
fully worked on

Risk
Mitigation

No

tool/process
currently
used

All actual risks

consideration
within the
group, no
universal

process created

Risk mitigation

but no
standards are
finalized

Agile tools,

such as the
Distributed
Security
Standard

Matrix, are
being utilized
and
implemented

Tools and

constant
communication
mitigation of
risks stared

between
Scrum/Agile
teams

www.manaraa.com

69

Scope of
testing

Timelines not
defined

Testing not
completed
within allotted

Sprint window
(caused
concern and
pushes

timelines)

Testing is on-
going, but not
all validation

stories
finalized

Manual testing
is coved, and
validation of

stores are
followed

Assessed tool
(Appium,
Selenium, UFT)

has been used
to help secure
the timing of
validation. To

help close out a
story to
"DONE."

Unit testing /
Code Reviews

(software)

Not being
used

Developers
manually test
coding

Definition and
component
testing are

happening

All stories
tested, either
manual or by

Tool (Junit,
Spock, Cuppa)

All approaches
to facilitate
Unit testing

finalized. Unit
Testing has
also been

added as a User
Story, within
Sprint, for
finalization

Automation
(software)

Not being
used / no
Automated

Tools have
been
dedicated to
project

Automation
does not keep
in the allotted

time. No
standard
allotted time.

50%
Automation
50% Manual

Testing

>70% of scripts
fully
Automated by a

chosen/
Dedicated Tool

100%
Utilization and
coverage via

the use of a
dedicated
Automation
tool (Appium,

Selenium, UFT)

Continuous
Integration

Not

implemented
or standards
finalized

No automation.

All Integration
completed by
hand. Issues are
hard to mitigate

Automation of

CI
implemented,
either a
homegrown

solution or
Product Tool
No failure

notifications.
No continues
to run!

Integration of

code is now
more frequent,
and verification
of issues

handled, and
notification will
go out

Integration

now a part of
the system.

www.manaraa.com

70

Continue
Development

Not
implemented

Set up, but
manually run.
Failures not

fixed right
away.

Automation of
CD
implemented,

either a
homegrown
solution or
Product Tool

No failure
notifications.
No continues

to run!

Release on
demand is not
feasible.

Incremental
changes
(security, code,
versioning) can

now happen

Automated
Business
Automation

software
deliverers
speed and
efficiency

increase while
errors drop.

3) Section 3: Team Readiness

As per each Agile area, that rolls up to each Agile Group, the below are the three driving

factors, an analyst must fill in.

Within the Team Agile Risk Grid, the team will be required to fill in the following:

• Team’s Current Level ()-4)

• Target Maturity Level

• Max Level

Incorporated in the above 3 data points, the analyst can select a Maturity Level that spans

from Level 0 to Level 4.

• Zero is the lowest level, stating an Agile Area, within an Agile Group is not

prepared (Hampering the process).

• Four is the highest level an Analyst can also choose, stating the process is ready

and understandable (Optimal).

These maturity levels will allow the analysts to:

1)Select the Target Maturity in which the Group want to achieve (up to the level of 4)

www.manaraa.com

71

2)Select the Team’s Current Level, that the team is currently situated.

These levels are to help understand where each team’s Agile readiness is. Is the team’s

Zero levels, hampering the development status, or are they are Optimal Level, of Four, in

which the team is running on all cylinders.

 The output is required now to be shared by each decentralized agile microservices team,

to decipher the overall readiness. If there are significant inconsistencies, the team will need

to mitigate and plan how to resolve it.

www.manaraa.com

72

5.3 Data Analytics – Radar Map

5.3.1 Radar Map – Agile Readiness Risk Grid

Now that data has been entered, within the Agile Readiness Grid, the below radar report

can now easily decipher, where the team is currently struggling and is at risk of not meeting

the group's “Target Maturity Level.”

The purpose of the Agile Readiness Risk Grid is to assess the agility health for an

organization's team and process. To ask the question, “Is there Risk is seen within the Sprint

team?”

5.3.2 Radar Map How to read

The map should allow for an effortless view where gaps are within standards as well what

was the 1) initially requested maturity and 2) what is the maturity the group is currently

seeing.

(1) The RED line, on the Radar Chart, represents the client's maturity level. For optimal

maturity, the RED line should reach the outer rim of the chart. This level is the level

set before the building of the services and where the developer needs to deliver the

security standards, in each distributed team.

(2) The BLUE line represents the CURRENT level that the single distributed team

believes they are currently situated. The blue line represents the current maturity

snapshot where the team currently resides.

NOTE: Should frequently run to determine risk, especially when there are decentralized

teams.

www.manaraa.com

73

5.3.4 Radar Map - Output

Within the Map, each team will select the maturity they would like to get a good overview

of. Below is a visual outcome of such a map.

The map will have two sections, the Maturity, the client, is Targeting, and the Maturity,

the team, would like to see.

As an example, please view Continuous Development, the team was requested to meet a

maturity level of (3), and per map, they hit that target (3).

Another example is Teamwork. The maturity level of (4) signifies the current level of

maturity is (3). Per the Readiness Levels within the Team Agile Risk Grid, the team was

targeting an (4) Optimal rate that stated, “Teams, be it centralized or decentralized, there

is no coercion. The team is devoted”. However, the current level analyses, states that the

Readiness level is at a (3) Serviceable Level, in which the Teamwork is: Team >80%

comfortable.

www.manaraa.com

74

Figure 5-2: Agile Readiness Risk Grid – Radar Map

5.3.5 Radar Map – End Goal

Incongruent with agility, the need for risk mitigation and readiness needs to be a factor

within the context of a project. The usage of the Radar Map is to all a quick look into the

maturity the team wants to see and how it ‘measures’ up.

The end goal is to share analytics and risks with the rest of each decentralized team to help

distribute knowledge and mitigate any risks.

www.manaraa.com

75

5.3.6 Agile Readiness Scatter Charts

Another example to understand current Level chosen vs. Targeted Maturity, is represented

with the below Scatter chart. Chart easily represents data leased, by the team, within the

agile group, which was provided from the Agile Readiness Team analytics tool.

Figure 5-3: Agile Readiness Risk Grid – Radar Map

Agi
le

Me
tho
dol
o…

Te
am
wo
rk

Co
-

loc
ati
on

Te
am
siz
e

De
dic
ate
d

tea
m

Co
-

loc
ati
on

Ke
y

Rol
es
for
Scr
ipt

SM
E

an
d

PO
No
n…

Def
init
ion
of
do
ne

Sto
ry
siz
e

Ba
ckl
og
gro
om
ing

Spr
int
Me
eti
ngs
(Gr
o…

Te
am
/Pr
oje
ct

Ret
r…

Re
qui
re

me
nts
un
d…

Ris
k

Mit
iga
tio
n

Sco
pe
of
tes
tin
g

Uni
t

tes
tin
g /
Co
d…

Au
to
ma
tio
n

(so
ft…

Co
nti
nu
ou
s

Int
e…

Co
nti
nu
e

De
vel
o…

Team's Current Level
(0-4)

2 3 3 3 3 3 3 0 3 2 3 3 3 3 3 3 2 2 3 3

Targeted Maturity
(Max 4)

3 4 4 4 4 4 3 3 3 4 4 3 4 3 3 4 4 4 3 3

2
3 3 3 3 3 3

0

3
2

3 3 3 3 3 3
2 2

3 33
4 4 4 4 4

3 3 3
4 4

3
4

3 3
4 4 4

3 3

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

M
A

TU
R

IT
Y

LE
V

EL
S

STANDARDS LEVELS

Team's Current Level
(0-4)

Targeted Maturity
(Max 4)

Linear (Team's Current Level
(0-4))

www.manaraa.com

76

5.4 Tableau – Decentralized Team Overview

5.4.1 Introduction

Per the discussion in Chapter 4, the usage of analytics to view, gather, and mine data is the

key to understanding the correct output of data. As per the Radar Map, created in Microsoft

Excel, there are limitations to the analytics of data. Within this section, we will dive in to

the usage of another analytical software called Tableau. This software will allow us to

break down data further and slice the analytics to see the importance.

5.4.2 Dimensionality

In order to use such analytical tools, as Tableau, the developer will need to create and

define data into dimensionality. Please see the below data, that was imported via an Excel

data source, to form Dimensions and Measures within the Tableau Software.

Figure 5-4: Agile Readiness Risk Grid – Radar Map

www.manaraa.com

77

Each dimension, with Tableau, needs to be set to a Row/Column, in order to build the

table with Tableau.

Figure 5-5: Tableau Columns and Rows for Agile Readiness Risk Grid

5.4.3 Filters/Marks

With the finalization of data-dimensionality, the additional usage of filters is now essential

to help restrict the number of records the teams would like to have present in the data set.

The filters are based on the conditions that the teams need to provide. Various types of

filters used in Tableau are extract filters, data source filters, context filters, dimension

filters, and measure filters [16].

Each dimension, with Tableau, can then be filtered or marked to view specific data

represented from the directionality, below is a screenshot from Tableau, to filter teams and

set the data marks for color and detailed info that needs to be visually displayed.

www.manaraa.com

78

Figure 5-6: Tableau Filters and Marks for Agile Readiness Risk Grid

5.4.4 Distributed Team Agility Readiness Map

With dimensionality, filters, and data markers set, the outcome that’s produced was a

graphical view of the current Agility Readiness of 4 decentralized development teams.

The data simulates each team’s current level of risk per the average of each team's‘ Current

Level of Readiness.’ The map below is a very easy pictorial to view each decentralized

team's latest risk.

www.manaraa.com

79

Figure 5-7: Tableau Distributed Team Agility Readiness Map

Tableau also allows the analytical user to deep-dive further into data. Please take the above

Table 9 output. In order to view the overall updated, for example, in California, the analyst

can ‘hover’ over the California state icon and will be able to view the following:

Figure 5-8: Data Mining information within California

www.manaraa.com

80

The output given allows for each team to understand exclusive data about each region

and distributed team. Example, Figure 5-8, presents Team3, via Mesa, California, which

is at a 2.65% out of the maximum 4% a team can reach.

The analytics will allow for more in-depth conversation and analytics to mitigate the

‘why’ and what is causing these risks within the teams.

5.4.5 Agile Readiness Risk Grid – Conclusion

To make sure teams keep up with agility, and to truly follow a decentralized microservices

development efforts, all team of developers needs to work within a loosely coupled team.

However, to allow for the foundation of building strong, agile/decentralized teams,

throughout builds, teams need to make user they are aligned with each other. If not aligned,

have the tool provide a health check to analyze the issues seen, and to mitigate any risks

quickly.

5.5 Distributed Security Standard Matrix Tool

5.5.1 Purpose

The purpose of the Distributed Security Standard Matrix Tool is to assess the security

health for each decentralized Microservice team of developers. The Distributed Security

Standard Matrix Tool is shared between teams or the DevOps Manager to provides updates

of the health for the entire team.

5.5.2 Overview

Distributed Security Standard Matrix Tool Instructions can be used to set transformation

goals, monitor progress, and get the team in cohesion regarding agile development. The

instructions include Authentication Standards, Input and Output Standards, Logging

www.manaraa.com

81

assessments. This tool is used in many other creative ways, such as to focus

retrospectives and to help people at all levels do a self -assessment of their understanding

of agile practices. The overview encourages self-paced learning and allows people the

opportunity to learn from others that may have more agile experience

5.5.3 Instructions

The Distributed Security Standard Matrix Tool is designed to gauge security standards

the DEV teams are following.

The instructions are as follows:

1. In the 'Team' sheet, please assign a rating in the 'Current Level' field based on the

health levels that you as a developer feel you are currently at

 a. Hamper (0)

 b. In Transition (1)

 c. Supportable (2)

 d. Strong (3)

 e. Optimal (4)

2. Place the desired health level in the 'Target Level' field. 'Target Level' will monitor

and identify areas of improvement.

3. Place notes in the 'Comment' field to show what is needed and how to reach desired

goals.

4. Once completed, review the 'Radar Chart'; the teams can check all security standards.

NOTE: (1) The RED line represents your maturity level. For optimal maturity, the RED

line should reach the outer rim of the chart.

www.manaraa.com

82

 (2) The BLUE line represents the CURRENT level that the single distributed

team believes they are currently within. The BLUE line represents the current maturity

snapshot where the team currently resides

5. Additional analytics utilize data created from the tool.

NOTE: Teams should evaluate their maturity level before and or after a new MS / API

built.

5.5.4 Security Standard Matrix Tool

Figure 5-9: Security Standard Matrix Tool Instructions/Overview

5.5.4.1 Security Standard Matrix Tool Worksheet

Within the Security Standard Matrix Tool, the purpose is to allow decentralized teams to

prepare and collaborate to ensure proper setup, understand any risks that are seen to help

set up security standards.

www.manaraa.com

83

4) Section 1: Security Group and Standards

The worksheet is broken down into 9 ‘Security Groups, and each group will have a

particular ‘Standard’ that coincides with that group. This area will require a current level

of preparation to understand the readiness of each. Data can be rolled up to view data at

each group. Each group analysis is to show a picture of security readiness and standards

via each team.

Please see below the hierarchy, in ‘Table 12’, of the break-out of these the Security Groups,

with associated Standards.

Table 12: Security Group and Standards

Security Group Standards

1 Authentication Standards

 Standard Methods

 Logon

 Sensitive Data

2 Input

 User Submitted Content

 Scrubbing user input

 Enforce HTTP Methods

3 Tokenization

 Token Generation

 ‘TLL’/expire utilization

4 Output

 Sensitive Data

 Headers

5 Encryption

 Field Level

 Password Hash

6 Standard Return Errors

 Bad Requests

Unauthorized

7 Logging

www.manaraa.com

84

 Activities

 Threats

 Attempts

 Serialization

8 Tracing

 Performance

 Bottlenecks

9 Monitoring

 Database

 Users

 Data Collectors

5) Section 2: Security Standard Levels

All the nine Security Standard are assigned to a Security Group, which will be assigned a

rating in the 'Current Level' field based on the health levels or the below readiness levels.

Each readiness level (0-4), demonstrates, how prepared a Security Group is. The end game

is to share the updates and overview of each group, to allow for a team’s view status.

In the next section, Section 3, each team will use the below Readiness Levels to fill in and

update, what current level and targeted maturity levels they want to ascertain.

www.manaraa.com

85

Table 13: Security Standard Levels

Security
Standard

Hamper
(0)

In Transition
(1)

Supportable
(2)

Serviceable
(3)

Optimal
(4)

Standard

Methods

Standards

have not set

Suitable

Authentication
discussion:

OAuth2
JWT

Password
Storage

Quick
validation

(such as
Postman

testing) has
occurred and

ready to use
for

development

Validation
tested -

Authentication
validity tested

Security
failure is

phishing
vulnerability

tested

Setup and

Receiving
data

Auth selected
and

developed
upon

Logon

Understood

requirement
needed

 Not being

used at this
time

A standard
method for

authentication

selected

Implemented

Max Retry and
Jail safety

mechanisms

to test
vulnerabilities.

Logon still
need to be

vetted

Validated and
test

Encrypt
Everything

Sensitive

Data

Understood
requirement

needed
 Not being

used at this
time

Protect
Sensitive

Endpoints
Make sure that
all endpoints
with access to

sensitive data
require

authentication

universally
unique

identifiers
(UUID) utilized

to identify
resources

Unintended
operations are

to test
endpoints and

backdoors

Fully
implemented

www.manaraa.com

86

User

Submitted
Content

Not setup

iframes
utilized for

partial
development
Need to check

for external
hosted

JavaScript
libraries, as

these can
cause issues

Content

Security Policy
is set up

Vulnerabilities

such as Cross-
side scripting

and SQL
injections

have tested

Vulnerabilities

can now be
fully detected

Scrubbing

user input

Not set up,
requirements

still being

finalized

HTML tags,
Java and or

SQL
statements

recognized as
possibly

incorrect,
incomplete,
improperly

formatted

Duplication of
user input in

progress

database
setup and

testing started

Data fully
scrubbed

Enforce
HTTP

Methods

All simple

CRUD
methods
finalized

All simple

CRUD
methods
finalized

Method list
finalized and

listed, as well
as HTTP status

listed (200,

405, 201)

Vulnerabilities

such as Cross-
side scripting

tested

Methods
listed tested

and finalized

Token

Generation

Not
understood

and or not
being done

Setup but not

being used

Token and
Passwords
have been

developed and

ready for
testing

but not tested

yet

Token and
Passwords

tested

Token and
Passwords

tested and
implemented

www.manaraa.com

87

‘TLL’/expire

utilization

Not

understood
and or not
being done

Setup but not
being used

Setup TTL but
not active

Test for Fresh,
Stale, and

expiring
content. Time

to Live should
now be set to

govern the

process. See if
CDN (Content

Delivery
Networks) can

be set up to
optimization

techniques to

minimize page
rendering time
and improve

user

experience

Fully
implemented

Sensitive

Data

Not set up,

requirements
still being
finalized

Data still open

Token and
Passwords
have been

developed and
ready for

testing

but not tested
yet

Token and
Passwords

tested

Token and

Passwords
tested and

implemented

Headers

Understood
requirement

needed
 Not being

used at this
time

REST headers
and

parameters
finalized / size
limitation as

well

API testing to
understand if

developers
uncover data

for
Authorization,

Content type,
and ad cache

control

Can be used
Requests

from Headers
finalized

www.manaraa.com

88

Field Level

DB not set up

yes for and
Field level

encryption

Setup but not
active

sensitive data
(ex CC, SSN,)

have been
encrypted but
still visible to

developers

Sensitive data
tested

All Field Level

Data tested
encrypted
and stored

Password

Hash

Not

implemented

Password
setup as plan
text as of now

for
development

purpose

Hashing is set
up and tested

for
transformation

Password is

stored in the
database and
fully render

and tested

Password
stored as a

hash

Bad

Requests

Not
implemented

Identify the
Order of the

request
HTTP Status

Codes

Requests
finalized and

listed, and

HTTP status
listed

- 204 No

Content
-400 Bad
Request
-406 Not

Acceptable
-500 Internal
Server Error

Validated and
test

The server
takes

responsibility
for these error
status codes.

Unauthorized

Not
implemented

Identify the
Order of the

request

HTTP Status
Codes

Requests
finalized and

listed, and
HTTP status

listed
- 401

Unauthorized

Validated and
test

The server
takes

responsibility

for these error
status codes.

www.manaraa.com

89

Activities

Not

understood
and or not
being done

Understood
requirement

need
 Not being

used at this

time

Setup but not
active

Setup and
tested

Setup and
Receiving

data

Threats

Not

understood
and or not
being done

Understood
requirement

need Not

being used at
this time

Setup but not
active

Setup and
tested

Setup and
Receiving

data

Attempts

Not
understood
and or not

being done

Not
implemented

Setup but not
active

Setup and
tested

Setup and
Receiving

data

Serialization

Not

understood
and or not
being done

Understood
requirement

need
 Not being

used at this
time

Setup but not
active

Setup and
tested

Setup and
Receiving

data

Performance

Not
understood
and or not

being done

Not
implemented

Setup but not
active

Setup and
tested

Setup and
Receiving

data

Bottlenecks

Not

understood
and or not
being done

Understood
requirement

need
 Not being

used at this

time

Setup but not
active

Setup and
tested

Setup and
Receiving

data

Database

Not
understood
and or not

being done

Setup but not
being used

Setup but not
active

Setup and
tested

Setup and
Receiving

data

Users

Not
understood
and or not

being done

Setup but not
being used

Users added to
the system but

not active

Setup and
tested

Setup and
Receiving

data

www.manaraa.com

90

Data

Collectors

Not

understood
and or not
being done

Not needed at
this time

Setup but not
active

Setup and
tested

Setup and
Receiving

data

6) Section 3: Security Standard

As per each Security Standard, that rolls up to each Security Group, the below are the three

driving factors, an analyst must fill in.

Within the Distributed Security Standard Matrix Tool, the team will be required to fill in

the following:

• Team’s Current Level ()-4)

• Target Maturity Level

• Max Level

Incorporated in the above 3 data points, the analyst can select a Maturity Level that spans

from Level 0 to Level 4.

• Zero (0) is the lowest level, stating an Agile Area, within an Agile Group is not

prepared (Hampering the process).

• Four (4) is the highest level an Analyst can also choose, stating the process is ready

and understandable (Optimal).

These maturity levels will allow the analysts to:

1)Select the Target Maturity in which the Group want to achieve (up to the level of 4)

2)Select the Team’s Current Level, that the team is currently with

www.manaraa.com

91

These levels are to help understand where each team’s Security Standard readiness is.

Are standards at a Zero level, hampering the development status, or are they are Optimal

Level, of Four, in which the standards are following?

 The output is required now to be shared by each decentralized agile microservices team,

to decipher the overall security readiness and if standards are met. If there are significant

inconsistencies, the team will need to mitigate and plan how to resolve it.

5.6 Data Analytics – Radar Map

5.6.1 Radar Map – Distributed Security Standard Matrix Tool

Now that data has been entered, within the Distributed Security Standard Matrix Tool, the

below radar report can now easily decipher, where the team is currently struggling and is

at risk of not meeting the group's “Target Maturity Level.”

\The purpose of the Distributed Security Standard Matrix Tool is to assess the security

health for each decentralized Microservice team of developers or to see the health of the

entire team. To ask the question, “Is there Risk seen within each sprint development team?”

5.6.2 Radar Map How to read

The map should allow for an effortless look to see where gaps are within standards and

what was the 1) initially requested maturity and 2) the current maturity group.

(2) The RED line, on the Radar Chart, represents the team’s maturity level. For optimal

maturity, the RED line should reach the outer rim of the chart. This level is the level

set before the building of the services and where the developer needs to deliver the

security standards, in each distributed team.

www.manaraa.com

92

(3) The BLUE line represents the CURRENT level that the single distributed team

believes they are currently within. The blue line represents the current maturity

snapshot where the team currently resides.

NOTE: Should frequently run to determine risk, especially when there are decentralized

teams.

Figure 5-10: Team Distributed Security Standard Radar Metrix

www.manaraa.com

93

5.6.3 Radar Map - Output

Within the Map, each team will select the maturity they would like to receive an overview

within. The above, Figure 5-10’ is a visual outcome of such a map.

NOTE: The map will have two sections, to understand the current security maturity

standard the team is producing and the security maturity the team would like to see.

As an example, please view Performance Maturity per ‘Figure 5-11’. The team has met the

Performance maturity level of (3), and per map, the team hit that Performance target (3).

Per the Security Standards Levels, the team is comfortable with current standards being

“set up and tested.” Below please see ‘Figure 5-11’ for the definition of Performance

Security Standard (3).

Figure 5-11: Performance Maturity

5.6.4 Radar Map – End Goal

Incongruent with agility, the need for risk mitigation and readiness needs to be a factor

within the context of a project. The usage of the Radar Map is to present all a quick look

into the maturity the team wants to see and how it ‘measures’ up.

The end goal is to share analytics and risks with the rest of each decentralized team to help

distribute knowledge and mitigate any risks.

www.manaraa.com

94

5.7 Data Analytics – Risk Equivalency Metrix

The beauty of data is that it can is rendered and can easily miniplate to render data to work

for the developer/team. As an example, please see a quick slice of analytics measuring Risk

Equivalency from the Distributed Security Standard Matrix Tool data set. The table below,

via ‘Figure 5-13: Risk Equivalency Metrix’, displays output to easy view if a security

standard, via a single team, is meeting their Targeted Assessment or not.

www.manaraa.com

95

Figure 5-12: Risk Equivalency Metrix

This Metrix allows for

• Accessible output, to view if Team has met their selected Target Assessment,

selected before starting the phase of development

Data deciphered via formatting listed below

• If Red – Not Met (Risk needs mitigation)

www.manaraa.com

96

• If White – Assessment has been made, in which the teams have met their

Security goals.

End Goal: Findings distributed via decentralized teams

5.8 Tableau – Decentralized Team Overview

5.8.1 Introduction

Per the discussion in Chapter 4, the usage of analytics to view, gather, and mine data is the

key to understanding the exact output of data. As per the Radar Map and Risk Equivalency

Metrix, created in Microsoft Excel, there are limitations to the analytics of data and its

visualization.

Within this section, as was performed in Chapter 5 / Sub-chapter 5.4, we will again utilize

Tableau analytic prowess to setup further analytics and outputs.

5.8.2 Agile Usage

The benefit of utilizing Tableau is to allow for more in-depth dive into data rendered, that

has been entered within the Distributed Security Standard Matrix tool. Tableau will allow

for data to utilize and to quickly gather data, as well as understand any inconstancies. Last,

the data shared with all the teams, allowing for agile mitigations.

5.8.3 Distributed Security Standard Matrix Reports - Tableau Reports/Dashboards

To perform ‘quick’ analytics and share the output with the decentralized teams, below

Tableau reports are a reliable indicator that data can be used to present data to quickly

analyzes needed data points.

The below reports developed for security governance reporting:

www.manaraa.com

97

7) Stacked Bank and Heat Map Dashboard

Per description within section 4.3.4, a heat map is a graphical representation of data where

the individual values contained in a matrix are characterized as colors. The usage of Heat

Maps within Tableau will allow for a quick quantifiable view of data to focus quick ly and

accurately on a subsection of data. Analytics will allow the teams to deep dive into

understanding the underlying data.

The end goal of the Heat Map analytics tool provides additional filtering and data

manipulation for the greater definition of data and possible Risk Assessment and

mitigation. Also, within the dashboard, the stacked bar graph is a chart that uses bars to

show comparisons between categories of data, but with the ability to break down and

compare parts of a whole. Each bar in the chart represents a whole, and segments in

the bar represent different parts or categories of that whole [28].

The below example, within ‘Figure 5-14, allows for a dashboard representation to all

developers a view all Security Standards, within the below heat map, and allows for further

data mining into within Security Group the standard below to and what is the risk. Note

that filers have been added to quickly restrict the number of records present in the data set

based on the given condition.

www.manaraa.com

98

Figure 5-13: Heat/Stacked Bar Chart

8) Rating and Description Dashboard

The Rating and Description Dashboard had been built to elaborate and visually described

the Information about each Security Standard, rolled up to its Security Group, and

explained what Security Standard Levels, each has met. Please view Table 13: Illustration

Security Standard Levels, for more info. For example, an analyst will be able to view

• What Security Standard Level and Description met; (0-4) Hamper-Optimal

• What Security Group and Standard reviewed

www.manaraa.com

99

• Moreover, most importantly what is the full description of the Standard has been

met

Figure 5-14: Mata Mining on Description - Rating and Description

5.8.4 Dimensionality

In order to use such data, shown in the above ‘Figure 5-15’, the below dimensionality

within ‘Figure 5-16’ has been set up. The users create and define data into dimensionality.

Dimensions are fields that allow an analyst to slice and further describe data records (e.g.,

names, dates, IDs, geographical info). The dimensionality will also measure which value

fields allow the aggregation data (summed, averaged, and more).

Please see data within ‘Figure 5-16’, which was imported via a Microsoft Excel data

source, to form Dimensions and Measures within the Tableau Software.

www.manaraa.com

100

Figure 5-15: Dimensions and data for Rating and Description Dashboard

Each dimension, with Tableau, can then be filtered or Marked to view specific data

represented from the directionality, below is a screenshot from Tableau, to filter teams and

set the data marks for color and detailed info that needs to be visually displayed.

The dimensionality of the row and columns make up the structure of the Rating and

Description Dashboard. Please see Figure 5-16:

Figure 5-16: Tableau Rows and Columns for Rating and Description Dashboard

www.manaraa.com

101

Figure 5-17: Dimensions and Marks for Rating and Description Dashboard

5.8.5 Rating and Description of Risk Dashboard

With dimensionality, filters, and data markers set, the outcome produces a graphical view

of the current Ratings and Description of Risks for each current security standard. Each

circle, below within ‘Figure 5-19’, is a pictorial representation of each Risk Assessment

(Hamper -Optimal), for each Security and its associated Group

www.manaraa.com

102

Figure 5-18: Rating and Description Risk Dashboard

As described in the below ‘Figure 5-20’, we see data mining feed from the data gathered

from the above Rating and Description Risk Dashboard (in ‘Figure 5-19’). Below is a

deeper dive and quick description of the current stage of each standard. 23 below.

Figure 5-19: Data Mining / Deeper Drive into Rating and Description Risk Dashboard

www.manaraa.com

103

5.8.6 Conclusion - Rating and Description Dashboard

Ensuring teams have a clear description of each standard, the Rating and Description

dashboard developed. Each team, within the decentralized team model, will have their

dashboard to view and analyze all security standards and possible risks. The Rating and

Description of Risk dashboard were created to ensure clarity and analysis.

5.9 Average Security Risk per Sprint Report

5.9.1 Introduction

Development efforts and risks allow for developers to identify and understand what

standards they are following or what is the current status needs addressing.

Analysts can utilize this data to dive deeper into how or if these risks are hampering their

development build, in terms of build time. As well as to better understand the Average

Team Risk, via all developmental Sprint windows, the below dimensionality created.

5.9.2 Dimensionality

In order to view analyze data granularity, the data definitions of each dimensionality

needed to be clarified.

As this report specifically measures development efforts, two units of development times

need explaining.

• A Plan or PI signifies the length of time a plan or program will set. Each Program

Increment is typically set to 6 two weeks sprints, allowing for a total of 3 months

in which all developmental teams, will be assigned to build, test and deliver core

functionality agreed upon at the beginning of the PI.

www.manaraa.com

104

• A sprint (or iteration) is the basic unit of developmental times and effort, that

is, restricted to a specific duration. The typical duration, within an agile

microservice development, is that of a 2-week sprint window.

In this example, the time hierarchy has been broken down into from Year, Quarter, Months,

and week. (NOTE: 2 weeks make up a Sprint)

Figure 5-20: Hierarchy of Time set in the ‘Average Security Risk Per Sprint Report.’

‘Figure 5-22’, follows the same hierarchy as time; however, each sprint window

coincides with a Program Increment.

www.manaraa.com

105

Figure 5-21: Hierarchy of Program Increment of ‘Average Security Risk Per Sprint Report’

Last, as per below ‘Figure 5-23’, each team will be represented within each Security Group,

and the average risk per Quarter, per Sprint, per week, and will display the Rating

Description for each,

Figure 5-22: ‘Average Security Risk per Sprint Report’ – Dimensionality

Each circle within ‘Figure 5-24’, will provide the average security risk per Security

Group.

www.manaraa.com

106

For example, the Security Group called Monitoring (circled in Red), displayed in

‘Figure 5-24’, contains 3 Security Standards (Database, Users, Data Collectors). The

‘Average Security Risk per Sprint Dashboard ,’ allows Team 1, to easily display all

Security Group Averages for each Sprint.

Figure 5-23: Average Security Risk per Sprint Report

Analytics build to help team quantify, how much risk, is shown via a 1) a Security Group,

2) within a specific sprint-build window, and 3) what is the criticality.

www.manaraa.com

107

Figure 5-24: Data mining – Viewing data for Monitoring Security group’s risk per Sprint

5.10 Team – Overall Output Risk Assessment Reports

5.10.1 Introduction

All research and analytics have been to provide to represent a deep understanding of the

decentralized teams and the knowledge in which each team needs to 1) understand

coloration is importing and 2) and the need to analyze data for consistencies.

The team Overall Output Risk Assessment Reports are the final representation that will be

built to provide a centralized team overview of all (4 Teams) and their assessment of each

Standard.

Per the below ‘Figure 5-26’, the output of the report will again show visual annotations,

that would be able to have data deeper diver into the description and output of the original

report (please see ‘Figure 5-27’).

www.manaraa.com

108

Figure 5-25: Overall Output Risk Assessment Reports

Data analytics and data mining will provide data, in which each team has currently found.

These analytics can quickly glance at what each team, each Security Standard, and how it

compares to other teams.

The distribution of knowledge can be shared between each team to help mitigate setup

and risks.

www.manaraa.com

109

Figure 5-26: Data mining - Overall Output Risk Assessment Reports

The last example is the below analytics, ‘via Figure 5-28’, to show the segmentation of a

specific Security Standard called ‘Logon.’ Within the Logon group, the visualization

displays that all teams show a high-risk determination, but not Team 2.

The data will allow each distributed team, to share communication to understand 1) why

they are behind 3) how Team 2 mitigated the risks that all other distributed teams are

noticing, and or 3) what possible issues Team 1,3,4 have done performed incorrectly

www.manaraa.com

110

Figure 5-27: Deep-dive into analytics for ‘Logon’ Security Standard for all distributed teams

www.manaraa.com

111

Chapter 6 Conceptual Models

6.1 Chapter Introductions

Data that has been gathered, via Reports, Metrics, and Dashboards, has culminated in the

demand for communications between decentralized agile teams.

Via data gathered from initial surveys, in Chapter 4, as well as Reports, Metrics, and

Dashboards gathered via Chapter 5, a mold/plan emerges.

The definition of a model is a reflection of the research questions, a framework of inquiry,

including variables, and research designs developed as part of the grant activities.

Within this chapter, we will illustrate two conceptual models and how they tie together the

data to explain the events of the research.

1) CDAD (Characterize, Diagnose, Anticipate, Distribute) Learning Model

2) Dev-CDAD-Prod Model

6.2 CDAD (Characterize, Diagnose, Anticipate, Distribute) Learning Model

6.2.1 Introduction

A composition of a model is to conceptually construct steps and standards to ensure events

are positively understood and repeatable for a definitive outcome. The CDAD has been

created to convey standards, and governance was followed and delivered. The models

allow for each decentralized agile teams, to ensure standards and repeatable risks mitigated,

and lessons learned.

www.manaraa.com

112

Figure 6-1: CDAD (Characterize, Diagnose, Anticipate, Distribute) Learning

The above CDAD Model, shown in ‘Figure 6-1’, is compiled to be utilized at the beginning,

middle, and end of a project. The model is composed to deliver and recognize the need for

standards but will not hurt the agility of a project.

Below is the breakout of the CDAD model:

1. Characterize the Development team to develop:

a. Team Size

b. Ownership of Code

c. Team developmental Skills

d. Break out dev style:

www.manaraa.com

113

e. Distributed, Hybrid, Decentralize

2. Diagnose Governance Essentials and create/finalize:

a. Standards for entire team

b. Rules to apply

c. Structure required

3. Anticipate Risk by preparing for:

a. Mitigation of responsibilities, standards, security, ownership

b. Manage collaboration between teams

c. Communication (list, documentation)

4. Be ready to Distribute Standards that are created and to share with other teams for full

distributed governance and overview:

a. Regulation, Rules, and Standards shared between each decentralized team and

their developers

6.2.2 Conclusion

In a combination of each stage of the CDAC model, the characteristics allow developers

and teams to follow an informative/repeatable representation, which ensures teams can

characterize, diagnose, anticipate, distribute standards and risk within an agile process.

www.manaraa.com

114

6.3 Dev-CDAD-Prod Model

6.3.1 Introduction

Based on the CDAC Model, the building of a Security DevOps structure, see Figure 30

below, was built dynamically to understand which main deliverables will help drive which

standards. Also, what type of distributed govep.68rnance is required during each SDLC

development phase of a project.

Figure 6-2: Dev-CDAD-Prod Model

www.manaraa.com

115

6.3.2 CDAC Overview

Per the above Model (in Figure 6-2), each System Development Life Cycle (SDLC)

development phase has been laid out in the following: Requirements, Build, Validate,

Release, Deploy, and Monitor.

Per the research, each SDLC phase needs to be accountable for building specific standards

and deliverables. The above DEV-CDAD-Prod model displays how both team building

and security deliverables, fall into a distinct SDLC phase.

According to the Dev-CDAD-Prod model, the higher and left within the Model, the more

decentralized a standard can be executed or ran asynchronously (nonparallel/serial). For

example, building a team or selecting a programming language, per each decentralized

team can be done with not a lot of standards/risks.

However, if the developers require to build policies, logging, and measurement standards,

the model shows that the policies/access is vital for distribution and shared between the

team synchronously (in parallel) with the same importance. These standards cannot be

shifted or cannot be broken down.

6.3.4 Conclusion (Dev-CDAD-Prod)

The Dev-CDAD-Prod Model, based on the DevOps model, to ensure software

development practices, combine software development and information technology

operations to follow a development life cycle while delivering features, fixes, and updates

frequently in close alignment with business objectives.

Within the Dev-CDAD-Prod Model, the standards follow from the initiation of projects

(requirements) down to the Production standards (such as logging and monitoring). All

www.manaraa.com

116

standards are importing to the life of an application/solution. Following these efforts

allows for full transparency to follow an accurate distributed/decentralized model.

https://jira.app.syfbank.com:8443/secure/attachment/150535/Ignite%20Side%20by%20Side.docx?web=1

www.manaraa.com

117

Chapter 7 Final Survey

7.1 Introduction

Within the final survey, the intent is gathered feedback from a range of participants,

thought the organizations, to provide evidence that the matrix, tools, and models aided in

the understanding of risks and the distribution of governance for all decentralized teams.

Table 14 displays the participants that a part of the final survey.

Table 14: Final Survey Participants and Roles

Participants Role in Organization

1 Participant # 1 Technical Product Owner - API

2 Participant # 2 System Engineer

3 Participant # 3 Senior Security Solutions Architect

4 Participant # 4 Microservices Developers

5 Participant # 5 Microservices Developers

6 Participant # 6 Microservices Developers

7 Participant # 7 Microservices Developers

8 Participant # 8 Agile Coach / Educator

9 Participant # 9 Agile Coach / Educator

7. 2 Exit Survey Questions and Answers

7.2.1 Exit Survey

The survey utilized the Likert scale approach as well as a few interviews, in which we

gathered feedback. The Likert-type scale was used as it a widely used approach to scaling

responses in survey research.

Below, please notice each matrix and tool has its Likert scale question. Below each set of

questions is a report-out. The survey actively demonstrates, the usage of tools, helps aid in

www.manaraa.com

118

the distribution of standards, teams’ structure, and understand and governance needed.

The participants confirmed that the tools should be utilized via any point of the sprint

development window, as the data gathered would be very useful for all teams.

Also, the usage of a data analytics tool, such as Tableau, helps to interpret further any data

or risks that each decentralized team should know.

Table 15: Final Survey: Likert Scale Question #1

Table 16: Distributed Security Standard Matrix Tool Survey Exit

www.manaraa.com

119

7.2.2 Exit Survey Question #2 - Agile Readiness Risk Grid Survey Exit

Table 17: Final Survey: Likert Scale Question #2

Table 18: Agile Readiness Risk Grid Survey Exit

www.manaraa.com

120

Table 19: Final Survey: Likert Scale Question #3

Table 20: CDAD Usage Survey Exit

www.manaraa.com

121

Table 21: Final Survey: Likert Scale Question #4

Table 22: DEV-CDAD-Prod Usage Survey Exit

www.manaraa.com

122

Table 23: Final Survey: Likert Scale Question #5

Table 24: Overall Research - Exit Survey

7.2.3 Exit Interview – Feedback

When reviewing the responses, from the initial survey and exit survey, an interesting

finding becomes identified. All respondents had a strong opinion on the benefits that

tools and models do help to guide and aid in the communication of standards via

decentralized microservice teams.

www.manaraa.com

123

To round up the research and the survey data, interviews conducted between three

participants, help to garner more insight. These participants were not originally a part of

any survey or conversions. The data gathered from the below three participants help

further garner the importance of distributions as well as models. All respondents agreed

that the ‘Agile Team Readiness Grid’ and ‘Distributed Risk tool’ can be used within

other projects, within their current companies.

Please see all feedback below within Figure 7-1 to 7-2:

The first form of feedback was from a VP, IT Financial Reporting – Development:

From: David.Fisher@syf.com>

Sent: Wednesday, August 14, 2019, 8:01 AM

To: Dall, Zachary

Subject: RE: Feedback from Dissertation Conversation:

In my opinion, the models exhibit strong potential for usage in scaling enterprise

DevOps at the company, particularly in the readiness assessment phase of
evaluating our current state so we have a better idea of how far the journey will be
to target state. One of the biggest hurdles to beginning that journey has a
meaningful first step and the processes you have outlined could deliver that

‘Minimum Viable Product’ that creates the early win that overcomes the inertia
and begins the necessary momentum.

I hope this helps good luck with the delivery!

Dave

VP, IT Financial Reporting – Development

Figure 7-1: Exit Interview - Feedback #1

mailto:David.Fisher@syf.com

www.manaraa.com

124

The second form of feedback was from an SVP, Technology Leader – Treasury:

From: <Trina.Hill@syf.com>

Sent: Thursday, August 15, 2019, 3:19 PM

To: Dall, Zachary

Subject: RE: Feedback from Dissertation Conversation:

Feedback:

• I think the model could be utilized in my experience. In the past, at past
companies, we struggled with the wing to wing process.

• This model would allow us to manage the solution wing to wing and

mitigate risk along the way in a systemic fashion.

• The model will allow teams to think about the entire lifecycle with an
agile eye. When you think about today and the future using this model, it
will allow you to see what you need to do today but build for tomorrow. It

is important to have the solution/product roadmap in mind in its entirety.

• This model forces you to think about not only creation but also growth for
today and tomorrow.

Trina Hill

SVP, Technology Leader – Treasury

Figure 7-2: Exit Interview - Feedback #2

The third form of feedback was from a Development Subject Matter Expert:

From: Srini.Iyer@syf.com>

Sent: Tuesday, August 13, 2019, 4:16 PM

To: Dall, Zachary

Subject: Some points and recommendation Distributed Governance

Distributed Governance ensures:

mailto:Trina.Hill@syf.com
mailto:Srini.Iyer@syf.com

www.manaraa.com

125

• Authentication and integrity of data are the most important
cybersecurity requirements and were assessed to be critical for all types

of interactions, including monitoring and control commands, to ensure that
the data exchanged comes from known sources and has not been
modified in transit.

• Authorization and non‐repudiation are important to ensure that
commands are authorized, executed as specified, and reported back

accurately.

• Availability is critical since Microservice usually operate autonomously
and can be preset to perform the functions that are intended to be
achieved

So, considering the above critical matrices that were done within the
study, it is recommended to be used and adopted for better design and
implementation within Microservices agile projects.

Thanks & Regards,

Srini Iyer

SME Development - Deposits

Figure 7-3: Exit Interview - Feedback #3

www.manaraa.com

126

Chapter 8 Conclusion and Future work

8.1 Conclusion

Throughout the paper and research, the focus was to provide a well-versed understanding

of the critical need, via decentralized development teams, to maintain open

communication, distribute standard, mitigate risks, all while following agile standards.

The research conducted was between two companies to gather pain-points noticed and how

the use of tools was needed to strengthen governance and risks within their microservices

decentralized development teams. From the research, the goal of decentralized

development, allows the software engineering teams to solve development problems more

efficiently, and teams can build; however, they seem fit.

The decentralization of teams is not harmful unless they do have a way to distribute needed

standards prior, during, and after a microservices has been constructed. The usage of

models and tools helped to strengthen the communication, risks, and any possible agile

mitigation, throughout a microservice build.

Decentralization of teams can strive, via any development build, only if the distribution of

governance and procedures are followed, within each decentralized team.

www.manaraa.com

127

Additionally, it is essential to develop via an SDLC mindset, so that developers follow

standards needed to be governed, and the decentralized components are built with the same

governed structure.

Last, below are some pros and cons for Decentralized and Distribution via the research and

data gathered:

Decentralized Pitfalls:

• No single-entry point where decisions can be discussed or finalized

• Strong possibilities communicated standards are lacking between other

decentralized teams

• Decisions influence the decisions of all other decentralized teams

• No single team will have complete standards

• Decision (risks, mitigations, communication) between teams lacking

Distributed Windfall:

• Standardizations created to govern

• Standards provided need to be distributed to the ALL decentralized teams, to

follow as guidelines

• No ambiguity means better standard, less question, quicker/secure deployment

• Learning is essential between decentralized teams

www.manaraa.com

128

8.2 Future Work

The research, within this paper, gathered a multitude of data via surveys, to understand

what development teams are no focusing on, what pain-points developers see as well as

models and learning procedures that they felt were needed to help conduct better

development between the decentralized team.

Because all data, within the paper, has been simulated data, future work can be to:

8.2. 1 Manual Utilization

Manually utilize all matrix and tools, presented in this paper, to gather data from an

ongoing/existing microservices development project.

Each decentralized ‘team lead’ will need to:

1) Complete and execute the Agile Team and Security Risk assessments

2) Utilize an analytic software tool, like Tableau, to compile and data mind all data
gathered from each team via the tools

3) Distribute the output of each assessment with each decentralized team

4) Mitigate any observed risks

5) Utilize the CDAD and the Dev-CDAD-Prod Models to follow structure thought-
out all SDLC phases and project iterations of the microservice project

8.2.2 Digitalize Utilization

Digitalize the Agile Team Matrix and Security Risk Grid assessment and follow the CDAD

and the Dev-CDAD-Prod Models. Possibly build a front-end GUI, in which each

decentralized team can add data, analyze data, and distribute to all microservice

development team to analyze risks and governance procedures.

www.manaraa.com

129

Appendix A Glossary

Team Definition

Asynchrony

Asynchrony is the occurrence of events independent of the main program
flow and ways to deal with such events.

Agile Agile is an iterative approach to software development.

Application
Programming Interface
(i.e., API)

1) It provides a way to connect computer software components.
2) Specifies how these different software components can interact with each
other and enable content and data to share between components.
3) Software-to-software interface, not a user interface.

Bottom-up development

1) Planning provided to the team members, i.e., the people who are actively
working on the project, have a say in the project planning and decisions
made collaboratively. It will improve team communication and team
building, and also empowers the team members.
2) Progress is made by the composition of available elements,
beginning with the primitive elements provided by the implementation
language and ending when the desired program reached

CI/CD Continuous Integration / Continue Development

Dexterous Centric Operations can perform within multiple approaches.

www.manaraa.com

130

Decentralized Team

1) In Agile, this follows the progression from development,
testing, and IT teams morphing into smaller DevOps teams.
2) Rather than forcing a uniform monoculture, decentralizing allows for
different teams to pick their specifics within the scope of what the standards
allow.
3) The goal is to free a software engineer team to solve development
problems independently more efficiently and with higher velocity.

Developer

A team member who programs computers or designs the
system to match the requirements of a systems analyst

DevOps

(Development and operations) is an enterprise software
development team used mange the agile relationship between
development and IT operations

Dimension

Are usually those fields that cannot aggregate; measures, as its name
suggests, are those fields that can be measured, aggregated, or used for
mathematical operations.

Distributed Governance

1) Specification of principles and methods which enable scalable
coordination for forming consensus and to legitimate decisions.
2) The approach must be, a principal’s dispersed governance /rules,
within a workforce of various user needs, must be distributed to be effective
and efficient.

Hierarchy
 Consists of different levels, each corresponding to a dimension attribute.

Filter

Filters help restricts the number of records present in the data set based on
the given condition.

Learning Model

A learning model is a description of the mental and physical mechanisms that
are involved in the acquisition of new skills and knowledge and how to
engage those mechanisms to encourage and facilitate learning.

Likert Scale

Is a psychometric scale commonly involved in research that employs
questionnaires

www.manaraa.com

131

Mark

Marks provides Tableau users with control over how the data displayed in
the view.

Microservice
Architecture

MA is the style of architecture that defines and creates systems through the
use of small independent and self-contained services. They are also aligned
closely with business activities.

Microservice

1)A style that structures an application as a collection of loosely coupled
services, which implement business capabilities.
2) Enables the continuous delivery/deployment of large, complex
applications.
3) Take more of a bottom-up development/ownership approach.

Model

It is the reflection of a research question, framework of inquiry,
including variables, and research designs developed as part of the grant
activities. A model is considered theoretical since social and learning theories
inform the development.

Monolithic

1) Typically a single-tiered software application in which the user interface
and data access code combined into a single program from a single platform.
2) Self-contained, and independent from other computing applications.
3) A top-down mindset of requirements, testing, development,
deployment.

Operation Centric Workable viable solution with no need for change

PO (Program Manager)

Articulates a program's strategy and objectives and assesses how it will
impact a business. They must define and oversee a list of dependent projects
needed to reach the program's overall goals

Program Increment (PI)

Delivers incremental value in the form of working, tested software,
and systems.
NOTE: PI’s are typically 8 – 12 weeks long.

SDLC (System
Development Life Cycle)

Used in systems engineering, information systems, and software engineering

to describe a process for planning, creating, testing, and deploying an
information system.

www.manaraa.com

132

(SOA) Service-oriented
architecture

A style of software design where services are provided to the other
components by application components, through a communication
protocol over a network

(SME) Subject Matter
Expert

An SME is a team member who has special skills or knowledge on a
particular job or topic. SMEs are highly accessed by instructional designers to
extract intelligence when developing courseware and learning programs.

Sprint

Time boxed iteration of a continuous development cycle
Routine Sprints are 1-2 weeks long.

Survey

Market research surveys make it easy to get opinions from potential and
existing customers, test concepts, measure brand awareness, and more.

Synchrony Simultaneous action, development, or occurrence.

Tableau

Data Analytics visualization tool that allows for fast analytics, smart
dashboards, and data mining and manipulation.

Top-down development

Progress made by defining the required elements in terms of more basic
elements, beginning with the required program and ending when the
implementation language reached.

www.manaraa.com

133

References

[1] AIM Consulting, “12 Best Practices for Distributed Development Teams Using Agile
and Scrum Methodologies.” AIM Consulting. 17-July-2015

[2] Avidan, Z & Otharsson, H, "Accelerating the Digital Journey from Legacy Systems
to Modern Microservices." Edition 1-B, 2018

[3] Arsov, K., “Microservices vs. SOA — Is There Any Difference at All?”. A Medium
Corporation, 10-Nov-2017

[4] Ayers, C., “8 Pros and Cons of Decentralization”. 23-Sept-2016

[5] Baker, C., “Managing microservices: How to get big benefits from a small service
architecture.” World Canada. 22-Sept-2016

[6] Barry, D. & Dick, D., “Web Services, Service-Oriented Architectures, and Cloud
Computing: The Savvy Manager's Guide (Second Edition).” Waltham: Morgan
Kaufmann. 2013.

[7] Bachar, H., “Top-down vs. bottom-up approaches: Which is right for you?.“ Clarizen.
20-Dec-2016

[8] Bass, Len; Weber, Ingo; Zhu, Liming, “DevOps: A Software Architect's
Perspective.”, Addison-Wesley. 2015

[9] Brockway, E., “What You Should Know About Tableau.” New Horizons. 6-Sept-
2017

[10] Cark, K., “Microservices, SOA, and APIs: Friends or enemies? A comparison of key
integration and application architecture concepts for an evolving enterprise.” IBM.

21-Jan-2016

[11] Cawthorne, J. “How to Apply Governance to Your Collaboration Tools” CMS
LiveWire. 22, Oct 2018

[12] Conway, M., “How Do Committees Invent?” Thompson Publications, Inc., April
1968

[13] Faulkner, B., “The Pros & Cons of Decentralized Leadership.” WordPress. 10-Feb-
2019

[14] Fields, E & Rueter M., “Tableau for the Enterprise: An IT Overview.” Tableau.com.
2019

[15] Fowler, M “Microservices - a definition of this new architectural term.” Marin
Fowler.com. 25-March 2014

https://www.barryandassociates.com/managers-guide.html
https://www.barryandassociates.com/managers-guide.html

www.manaraa.com

134

[16] Harvey, C., “7 Technologies that Enable a Microservices Architecture.”
InformationWeek. 15-June, 2017

[17] Heffner, R. “Microservices Have An Important Role In The Future Of Solution
Architecture.” Forrester. 16-July-2105

[18] Guru, “Types of Filters in Tableau: Condition by Formula, Extract, Context.” Guru99.
27-March-2019

[19] Joosten, T., “A National Research Model for Online Learning.” The University of
Milwaukee. 27-Sept-2015

[20] Kappagantula, S., “What Is Microservices – Introduction to Microservice
Architecture.” Microservices Zone. 22-May,2019

[21] Könönen, H., “Microservices: Considerations before implementation .” Aalto
University. 2018

[22] Mone`, L, “Microservices vs. SOA – Know the Difference.” LeanIX. 2019

[23] Mone`, L, “Microservices-What an Enterprise Architect needs to know,” Document
Version 1.1 Lean IX. 2019

[24] Morgan, G., “Images of an organization” Berrett-Koehler Publisher, San Francisco,
CA. 1998

[25] Nadareishvili I., Mitra R., McLarty M. & Amundsen, “Microservices Architecture.
Aligning principals, practices and culture” O’Reilly Media, Sebastopol, C., June 2016

[26] Learn Model. (n.d.). In Alleydog.com's online glossary. Retrieved

[27] Roos, D., “How to Leverage an API for Conferencing,” HowStuffWorks. 2019

[28] Shrivastava, S. & Date, H., “Distributed Agile Software Development: A Review”
Journal of Computer science and Engineering, Volume 1, Issue 1, May 2010

[29] Smolic, H., “Stacked Bar chart: Definition and Examples.” Businessq. 12-Feb 2017

[30] Stine, M. “Migrating to Cloud-Native Application Architecture” O’Reilly Media,
Sebastopol, CA, 2015

[31] Taylor, T., “How microservices governance has evolved from SOA” TechTarget, 24
Oct 2017

[32] Wittmer, P., “SOA vs. Microservices – Learn the Difference & Decide.” Tiempo
Development. 21-Nov-2018

[33] Zuker, A., “Project Management: Centralized vs. Decentralized Delivery, “Project
Connection. 2017

